Hammar Perry, Diana
- Department of Aquatic Resources (SLU Aqua), Swedish University of Agricultural Sciences
Research article2021Peer reviewedOpen access
Asplund, Maria E.; Dahl, Martin; Ismail, Rashid O.; Arias-Ortiz, Ariane; Deyanova, Diana; Franco, Joao N.; Hammar, Linus; Hoamby, Arielle, I; Linderholm, Hans W.; Lyimo, Liberatus D.; Perry, Diana; Rasmusson, Lina M.; Ridgway, Samantha N.; Gispert, Gloria Salgado; D'Agata, Stephanie; Glass, Leah; Mahafina, Jamal Angelot; Ramahery, Volanirina; Masque, Pere; Bjork, Mats;
Show more authors
Context Seagrass meadows act as efficient natural carbon sinks by sequestering atmospheric CO2 and through trapping of allochthonous organic material, thereby preserving organic carbon (C-org) in their sediments. Less understood is the influence of landscape configuration and transformation (land-use change) on carbon sequestration dynamics in coastal seascapes across the land-sea interface. Objectives We explored the influence of landscape configuration and degradation of adjacent mangroves on the dynamics and fate of C-org in seagrass habitats. Methods Through predictive modelling, we assessed sedimentary C-org content, stocks and source composition in multiple seascapes (km-wide buffer zones) dominated by different seagrass communities in northwest Madagascar. The study area encompassed seagrass meadows adjacent to intact and deforested mangroves. Results The sedimentary C-org content was influenced by a combination of landscape metrics and inherent habitat plant- and sediment-properties. We found a strong land-to-sea gradient, likely driven by hydrodynamic forces, generating distinct patterns in sedimentary C-org levels in seagrass seascapes. There was higher C-org content and a mangrove signal in seagrass surface sediments closer to the deforested mangrove area, possibly due to an escalated export of C-org from deforested mangrove soils. Seascapes comprising large continuous seagrass meadows had higher sedimentary C-org levels in comparison to more diverse and patchy seascapes. Conclusion Our results emphasize the benefit to consider the influence of seascape configuration and connectivity to accurately assess C-org content in coastal habitats. Understanding spatial patterns of variability and what is driving the observed patterns is useful for identifying carbon sink hotspots and develop management prioritizations.
Seascape connectivity; Land–sea interface; Mangrove deforestation; Seagrass meadows; Sedimentary carbon storage
Landscape Ecology
2021
Publisher: SPRINGER
Physical Geography
Environmental Sciences
https://res.slu.se/id/publ/110996