Fransson, Peter
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences
- University of Heidelberg
Research article2025Peer reviewedOpen access
Fransson, Peter; Lim, Hyungwoo; Zhao, Peng; Tor-ngern, Pantana; Peichl, Matthias; Laudon, Hjalmar; Henriksson, Nils; Nasholm, Torgny; Franklin, Oskar
Although the separate effects of water and nitrogen (N) limitations on forest growth are well known, the question of how to predict their combined effects remains a challenge for modeling of climate change impacts on forests. Here, we address this challenge by developing a new eco-physiological model that accounts for plasticity in stomatal conductance and leaf N concentration. Based on optimality principle, our model determines stomatal conductance and leaf N concentration by balancing carbon uptake maximization, hydraulic risk and cost of maintaining photosynthetic capacity. We demonstrate the accuracy of the model predictions by comparing them against gross primary production estimates from eddy covariance flux measurements and sap-flow measurement scaled canopy transpiration in a long-term fertilized and an unfertilized Scots pine (Pinus sylvestris L.) forest in northern Sweden. The model also explains the response to N fertilization as a consequence of (i) reduced carbon cost of N uptake and (ii) increased leaf area per hydraulic conductance. The results suggest that leaves optimally coordinate N concentration and stomatal conductance both on short (weekly) time scales in response to weather conditions and on longer time scales in response to soil water and N availabilities.
nitrogen uptake; optimality theory; plant hydraulics; Scots pine; stomatal model
Tree Physiology
2025, volume: 45, number: 2, article number: tpae168
Publisher: OXFORD UNIV PRESS
Forest Science
https://res.slu.se/id/publ/140641