Skip to main content
SLU publication database (SLUpub)

Abstract

Biotic interactions are expected to influence species' responses to global changes, but they are rarely considered across broad spatial extents. Abiotic factors are thought to operate at larger spatial scales, while biotic factors, such as species interactions, are considered more important at local scales within communities, in part because of the knowledge gap on species interactions at large spatial scales (i.e., the Eltonian shortfall). We assessed, at a continental scale, (i) the importance of biotic interactions, through food webs, on species distributions, and (ii) how biotic interactions under scenarios of climate and land-use change may affect the distribution of the brown bear (Ursus arctos). We built a highly detailed, spatially dynamic, and empirically sampled food web based on the energy contribution of 276 brown bear food species from different taxa (plants, vertebrates, and invertebrates) and their ensemble habitat models at high resolution across Europe. Then, combining energy contribution and predicted habitat of food species, we modelled energy contribution across space and included these layers within Bayesian-based models of the brown bear distribution in Europe. The inclusion of biotic interactions considerably improved our understanding of brown bear distribution at large (continental) scales compared with Bayesian models including only abiotic factors (climate and land use). Predicted future range shifts, which included changes in the distribution of food species, varied greatly when considering various scenarios of change in biotic factors, providing a warning that future indirect climate and land-use change are likely to have strong but highly uncertain impacts on species biogeography. Our study confirmed that advancing our understanding of ecological networks of species interactions will improve future projections of biodiversity change, especially for modelling species distributions and their functional role under climate and land-use change scenarios, which is key for effective conservation of biodiversity and ecosystem services.

Keywords

climate change; community; ecosystem; food web; habitat; human impact; land use; predator-prey; species distribution model; Ursus arctos

Published in

Global Change Biology
2025, volume: 31, number: 6, article number: e70252
Publisher: WILEY

SLU Authors

UKÄ Subject classification

Ecology

Publication identifier

  • DOI: https://doi.org/10.1111/gcb.70252

Permanent link to this page (URI)

https://res.slu.se/id/publ/142676