Berggren Kleja, Dan
- Department of Soil and Environment, Swedish University of Agricultural Sciences
- Swedish Geotechnical Institute (SGI)
The spread of per- and polyfluoroalkyl substances (PFAS) in the environment poses a severe threat to soil organisms, aquatic life, and human health. Many PFAS compounds are mobile and easily transported from soils to groundwater and further to surface waters. Leaching tests are valuable tools for assessing the site-specific leaching behaviour of contaminants. Here, we report the results of an evaluation of two standardized leaching tests for PFAS-contaminated soil materials: the batch test (ISO 21268-2:2019) using either demineralized water or 1 mM CaCl2 as leachants (liquid-to-solid (L/S) ratio of 10) and the up-flow percolation test (ISO 21268-3:2019) using 1 mM CaCl2 as leachant. One field-contaminated soil and three spiked (12 PFAS compounds) soils (aged 5 months) were included in the study. Desorption kinetics in the batch test were fast and equilibrium was obtained for all PFAS compounds within 24 h, the prescribed equilibration time. The same solubility was obtained for short-chain PFAS (PFBA, PFHxA, PFHpA, PFBS) in demineralized water and 1 mM CaCl2, whereas significantly lower solubility was often observed for long-chain PFAS in CaCl2 than in water, probably due to decreased charge repulsion between soil surfaces and PFAS compounds. In the up-flow percolation test, concentrations of short-chain PFAS in leachates decreased rapidly with increasing L/S, in contrast to long-chain PFAS, where concentrations decreased gradually or remained constant. Solid-solution partitioning coefficients (Kd), calculated from the data of the batch and percolation tests (1 mM CaCl2), were generally in agreement, although differing by more than three orders of magnitude between different PFAS compounds. Uncertainties and pitfalls when calculating Kd values from leaching test data are also explored.
PFCAs; PFSAs; desorption kinetics; equilibrium; Kd values
Environments
2025, volume: 12, number: 6, article number: 179
Publisher: MDPI
Environmental Sciences
https://res.slu.se/id/publ/142924