Omar Hmeadi, Muhmmad
- Department of Animal Biosciences, Swedish University of Agricultural Sciences
White adipocyte differentiation or adipogenesis requires coordination of metabolic sensing and transcriptional modifications to orchestrate lipid storage. Creatine and its kinases are implicated in adipose energy buffering, but the roles of cytosolic (CKB) and mitochondrial (CKMT2) creatine kinases in adipogenesis are unclear. We find that both CKB and CKMT2 are progressively upregulated during differentiation. Functional studies show that CKB restrains de novo lipogenesis (DNL) by limiting activation of carbohydrate-responsive element-binding protein (ChREBP), a key regulator of lipogenic genes. Mechanistically, CKB interacts with AKT and regulates its activation in response to insulin. Loss of CKB causes persistent AKT-mTORC1 signaling, increases glycolytic flux, and enhances ChREBP activation, thereby promoting glucose-derived lipid synthesis. Thus, CKB acts as a metabolic rheostat linking creatine-kinase activity to insulin signaling and nutrient-responsive transcription. We propose a CKB-AKT-ChREBP regulatory axis that contributes to metabolic remodeling and lipid homeostasis during adipocyte differentiation.
Cell Reports
2025, volume: 44, number: 11, article number: 116489
Cell Biology
https://res.slu.se/id/publ/144612