Johannisson, Anders
- Department of Animal Biosciences, Swedish University of Agricultural Sciences
Semen from five dairy AI bulls was split-filtered through a Sephadex G-15 filter and frozen in a Triscitric acid buffer egg yolk-based extender. The effect of filtration was studied morphologically for individual sperm abnormalities. Computer-assisted sperm analysis (CASA) was used for motility and sperm motion assessment. Flow cytometry was used to disclose sperm viability (SYBR- 14/PI), mitochondrial membrane potential (Mitotracker Deep Red/SYBR 14), acrosome integrity (SYBR 14/PE-PNA/PI), plasma membrane stability (Merocyanine 540/YO-PRO 1/Hoechst 333342), and chromatin stability (acridine orange staining). Filtration significantly reduced the concentration of recovered spermatozoa (P < 0.01), but improved semen quality, reducing the number of spermatozoa with various forms of morphological defects. Filtration also affected percentages of sperm motility after equilibration and after freezing/thawing. Sperm motion characteristics were, however, not significantly affected by filtration at any stage of the cryopreservation protocol, including post-extension, equilibration, or freezing/thawing. Filtration enhanced sperm viability after thawing (P < 0.05), but had no significant effect (P > 0.05) on recovery of spermatozoa with high mitochondrial potential, intact acrosomes, or preserved sperm chromatin structure. Sperm plasma membrane stability was also not affected by the filtration method used (P > 0.05). It can be concluded that filtration effectively separates weaken or abnormal spermatozoa in pre-freezing semen samples and therefore the procedure could be recommended to improve post-thaw sperm viability of selected, fertile sires. (c) 2004 Elsevier Inc. All rights reserved.
spermatozoa; Sephadex filtration; CASA; flow cytometry; bull
Theriogenology
2005, volume: 63, number: 1, pages: 160-178
Publisher: ELSEVIER SCIENCE INC
Clinical Science
https://res.slu.se/id/publ/3442