Skip to main content
SLU publication database (SLUpub)

Abstract

To study the complexity and structural characteristics of zinc finger proteins expressed during human hematopoiesis and to isolate novel regulators of blood cell development, a degenerate oligonucleotide probe specific for a consensus zinc finger peptide domain was used to isolate 63 cDNA clones for Kruppel-related zinc finger genes from the human monoblast cell line U-937. By extensive nucleotide sequence and Northern blot analysis, these cDNA clones were found to originate from approximately 42 different genes (HZF 1-42) of which only 8 have previously been described. Northern blot analysis showed that a majority of these genes were expressed at comparable levels in U-937 and HeLa cells. The large number of individual genes represented among the 63 clones and their apparent non-cell-type-specific expression suggest that the majority of the Kruppel-related zinc finger genes are likely to be expressed in most human tissues. In contrast, some of the genes displayed a restricted expression pattern, indicating that the represent potential regulators of monocyte differentiation or proliferation. Detailed structural analysis of the first 12 cDNAs (HZF 1-10) and a partial characterization of HZF 11-42 revealed that a common feature of human Kruppel-related zinc finger proteins is the presence of tandem arrays of zinc fingers ranging in number from 3 to over 20 that are preferentially located in the carboxy-terminal regions of the proteins. In addition, several novel KRAB-containing zinc finger genes and a novel conserved sequence element were identified.

Published in

DNA and Cell Biology
1995, volume: 14, number: 2, pages: 125-136
Publisher: MARY ANN LIEBERT INC PUBL

SLU Authors

UKÄ Subject classification

Molecular Biology
Biochemistry

Publication identifier

  • DOI: https://doi.org/10.1089/dna.1995.14.125

Permanent link to this page (URI)

https://res.slu.se/id/publ/41361