Huyben, David
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences
Introduction Single cell proteins, such as yeasts, are an ideal feed alternative to plant and fish meals as they do not compete as food for humans. Previous studies have fed live yeast, such asSaccharomyces cerevisiae, in cold pelleted diets to farmed fish in order to increase beneficial microbiota in the gut (Gatesoupe, 2007). However, commercial salmonid diets are typically extruded at high temperatures, which can inactivate yeasts and reduce their effects on gut microbiota. In addition, previous studies have used culture-based methods to determine gut microbiota, while the development of next generation sequencing has improved identification of unculturable microbiota. The objective of this study was to determine the effect of feeding yeasts,S. cerevisiae and Wickerhamomyces anomalus, on microbiota in the distal intestine of rainbow trout (Oncorhynchus mykiss). Materials and methods A diet of fish meal (FM) was used as a control against yeast diets that replaced 20, 40 and 60% of fish meal (digestible protein basis) with either S. cerevisiae(SC) orW.anomalus/S. cerevisiaemix (WA; Jästbolaget AB, Sweden). Diets were extruded at 120-130oC and later fed to triplicate tanks of 35 rainbow trout for 10 weeks. Afterwards, content and mucosa from the distal intestine of 3 fish per tank were collected. Ingredients, diets and gut samples were plated on yeast-peptone-D-glucose, then 26S rDNA were PCR-amplified and sequenced to determine live yeast counts and taxa. Diets and yeast ingredients were further examined microscopically to determine cell counts of yeast. For gut bacteria, 16S rDNA were PCR-amplified, barcoded and next generation sequenced using Illumina platform (SciLifeLab AB, Sweden). Significant differences (p
Publisher: EAS
Aquaculture Europe 2016
Fish and Aquacultural Science
https://res.slu.se/id/publ/80251