Persson, Henrik
- Department of Forest Resource Management, Swedish University of Agricultural Sciences
Interferometric Synthetic Aperture Radar (InSAR) data from TerraSAR-X add-on for Digital Elevation Measurement (TanDEM-X) were used to estimate aboveground biomass (AGB) and tree height with linear regression models. These were compared to models based on airborne laser scanning (ALS) data at two Swedish boreal forest test sites, Krycklan (64 degrees N19 degrees E) and Remningstorp (58 degrees N13 degrees E). The predictions were validated using field data at the stand-level (0.5-26.1 ha) and at the plot-level (10 m radius). Additionally, the ALS metrics percentile 99 (p99) and vegetation ratio, commonly used to estimate AGB and tree height, were estimated in order to investigate the feasibility of replacing ALS data with TanDEM-X InSAR data. Both AGB and tree height could be estimated with about the same accuracy at the stand-level from both TanDEM-X- and ALS-based data. The AGB was estimated with 17.2% and 14.6% root mean square error (RMSE) and the tree height with 7.6% and 4.1% RMSE from TanDEM-X data at the stand-level at the two test sites Krycklan and Remningstorp. The Pearson correlation coefficients between the TanDEM-X height and the ALS height p99 were r=.98 and r=.95 at the two test sites. The TanDEM-X height contains information related to both tree height and forest density, which was validated from several estimation models.
TanDEM-X; InSAR; forest; biomass; height; ALS; SAR
Scandinavian Journal of Forest Research
2017, volume: 32, number: 4, pages: 306-319
Publisher: TAYLOR & FRANCIS AS
Remningstorp
Forest Science
https://res.slu.se/id/publ/82584