Skip to main content
SLU publication database (SLUpub)

Research article2019Peer reviewedOpen access

Using a reaction-diffusion model to estimate day respiration and reassimilation of (photo)respired CO2 in leaves

Berghuijs, Herman N. C.; Yin, Xinyou; Ho, Q. Tri; Retta, Moges A.; Nicolai, Bart M.; Struik, Paul C.

Abstract

Methods using gas exchange measurements to estimate respiration in the light (day respiration Rd) make implicit assumptions about reassimilation of (photo)respired CO2; however, this reassimilation depends on the positions of mitochondria. We used a reaction-diffusion model without making these assumptions to analyse datasets on gas exchange, chlorophyll fluorescence and anatomy for tomato leaves. We investigated how Rd values obtained by the Kok and the Yin methods are affected by these assumptions and how those by the Laisk method are affected by the positions of mitochondria. The Kok method always underestimated Rd. Estimates of Rd by the Yin method and by the reaction-diffusion model agreed only for nonphotorespiratory conditions. Both the Yin and Kok methods ignore reassimilation of (photo)respired CO2, and thus underestimated Rd for photorespiratory conditions, but this was less so in the Yin than in the Kok method. Estimates by the Laisk method were affected by assumed positions of mitochondria. It did not work if mitochondria were in the cytosol between the plasmamembrane and the chloroplast envelope. However, mitochondria were found to be most likely between the tonoplast and chloroplasts. Our reaction-diffusion model effectively estimates Rd, enlightens the dependence of Rd estimates on reassimilation and clarifies (dis)advantages of existing methods.

Keywords

C-3 photosynthesis; mesophyll conductance; photorespiration; reaction-diffusion model; reassimilation; respiration

Published in

New Phytologist
2019, Volume: 223, number: 2, pages: 619-631

    UKÄ Subject classification

    Agricultural Science

    Publication identifier

    DOI: https://doi.org/10.1111/nph.15857

    Permanent link to this page (URI)

    https://res.slu.se/id/publ/100582