Skip to main content
SLU publication database (SLUpub)

Research article2019Peer reviewed

Importance of plant species for nitrogen removal using constructed floating wetlands in a cold climate

Choudhury, Maidul, I; Segersten, Joel; Hellman, Maria; Mckie, Brendan G.; Hallin, Sara; Ecke, Frauke

Abstract

Constructed floating wetlands (CFWs) have been tested in different climatic regions and aquatic habitat types for nitrogen (N) removal from surface water, but there is limited knowledge about their applicability for N removal in cold climate regions. Most CFWs studies are conducted at the micro- or mesocosm scale, while the application of CFWs at in situ is rare. Moreover, most CFWs studies have focused on plant N accumulation without considering macrophyte root-associated denitrification as a possible N removal pathway. Here, we study the N removal potential of CFWs through N accumulation by macrophytes and potential denitrification activity (PDA) associated with plants. At a mining area in the sub-arctic region of Sweden receiving N-rich mine effluents, we tested the concept of CFWs and evaluated the performance of six native, emerging macrophyte species planted in CFWs. The CFWs were deployed in two types of systems: in situ in the recipient lake, subjected to ambient N concentrations, and CFWs placed in water-side "eco-tanks", subjected to higher N concentrations. We showed that macrophyte establishment in CFWs is feasible under cold climatic conditions, both in situ and eco-tanks. The standing biomass of macrophytes, bulk N accumulation in plant biomass and PDA in mesocosms were 0.54-2.25 kg m(-2), 7.56-24.75 mg N m(-2) d(-1) and 31.82-2250.77 mg N2O-N m(-2) d(-1), respectively. In the recipient, the variation was larger and the values were higher (standing biomass, 0.37-6.74 kg m(-2); bulk N accumulation, 8.09-106.93 mg N m(-2) d(-1); PDA, 11.89-8446.15 mg N m(-2) d(-1)). Macrophyte root-associated denitrification was the main N removal pathway in the CFWs. Given the demonstrated applicability of CFWs and the high denitrification rates that can be obtained, future studies should focus on designing CFWs to enhance denitrification as this process leads to permanent removal of N from the water phase.

Keywords

Denitrification; Macrophytes; Mining; Nitrate; Nitrogen uptake; Nitrogen removal; Sub-arctic

Published in

Ecological Engineering
2019, Volume: 138, pages: 126-132
Publisher: ELSEVIER