Skip to main content
Research article - Peer-reviewed, 2019

A simple and efficient method for potential point-of-care diagnosis of human papillomavirus genotypes: combination of isothermal recombinase polymerase amplification with lateral flow dipstick and reverse dot blot

Ma, Biao; Fang, Jiehong; Lin, Wei; Yu, Xiaoping; Sun, Chuanxin; Zhang, Mingzhou


Cervical cancer is the second most common cancer in the world's woman population with a high incidence in developing countries where diagnostic conditions for the cancer are poor. The main culprit causing the cancer is the human papillomavirus (HPV). HPV is divided into three major groups, i.e., high-risk (HR) group, probable high-risk (pHR) group, and low-risk (LR) group according to their potential of causing cervical cancer. Therefore, developing a sensitive, reliable, and cost-effective point-of-care diagnostic method for the virus genotypes in developing countries even worldwide is of high importance for the cancer prevention and control strategies. Here we present a combined method of isothermal recombinase polymerase amplification (RPA), lateral flow dipstick (LFD), and reverse dot blot (RDB), in quick point-of-care identification of HPV genotypes. The combined method is highly specific to HPV when the conserved L1 genes are used as targeted genes for amplification. The method can be used in identification of HPV genotypes at point-of-care within 1 h with a sensitivity of low to 100 fg of the virus genomic DNA. We have demonstrated that it is an excellent diagnostic point-of-care assay in monitoring the disease without time-consuming and expensive procedures and devices.


Human papillomavirus (HPV); Recombinase polymerase amplification (RPA); Lateral flow dipstick (LFD); Reverse dot blot (RDB); Visual detection; Point-of-care testing (POCT)

Published in

Analytical and Bioanalytical Chemistry
2019, volume: 411, number: 28, pages: 7451-7460

Authors' information

Ma, Biao
China Jiliang University
Fang, Jiehong
China Jiliang University
Lin, Wei
China Jiliang University
Yu, Xiaoping
China Jiliang University
Swedish University of Agricultural Sciences, Department of Plant Biology
Zhang, Mingzhou
China Jiliang University

Sustainable Development Goals

SDG3 Good health and well-being

UKÄ Subject classification

Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)

Publication Identifiers


URI (permanent link to this page)