Research article - Peer-reviewed, 2020
Forest streams are important sources for nitrous oxide emissions - Nitrous oxide emissions from Swedish streams
Audet, Joachim; Bastviken, David; Bundschuh, Mirco; Buffam, Ishi; Feckler, Alexander; Klemedtsson, Leif; Laudon, Hjalmar; Loefgren, Stefan; Natchimuthu, Sivakiruthika; Oquist, Mats; Peacock, Mike; Wallin, Marcus B.Abstract
Streams and river networks are increasingly recognized as significant sources for the greenhouse gas nitrous oxide (N2O). N2O is a transformation product of nitrogenous compounds in soil, sediment and water. Agricultural areas are considered a particular hotspot for emissions because of the large input of nitrogen (N) fertilizers applied on arable land. However, there is little information on N2O emissions from forest streams although they constitute a major part of the total stream network globally. Here, we compiled N2O concentration data from low-order streams (~1,000 observations from 172 stream sites) covering a large geographical gradient in Sweden from the temperate to the boreal zone and representing catchments with various degrees of agriculture and forest coverage. Our results showed that agricultural and forest streams had comparable N2O concentrations of 1.6 +/- 2.1 and 1.3 +/- 1.8 mu g N/L, respectively (mean +/- SD) despite higher total N (TN) concentrations in agricultural streams (1,520 +/- 1,640 vs. 780 +/- 600 mu g N/L). Although clear patterns linking N2O concentrations and environmental variables were difficult to discern, the percent saturation of N2O in the streams was positively correlated with stream concentration of TN and negatively correlated with pH. We speculate that the apparent contradiction between lower TN concentration but similar N2O concentrations in forest streams than in agricultural streams is due to the low pH (<6) in forest soils and streams which affects denitrification and yields higher N2O emissions. An estimate of the N2O emission from low-order streams at the national scale revealed that ~1.8 x 10(9) g N2O-N are emitted annually in Sweden, with forest streams contributing about 80% of the total stream emission. Hence, our results provide evidence that forest streams can act as substantial N2O sources in the landscape with 800 x 10(9) g CO2-eq emitted annually in Sweden, equivalent to 25% of the total N2O emissions from the Swedish agricultural sector.Keywords
agriculture; forest; greenhouse gas; nitrogen; nitrous oxide; river; streamPublished in
Global Change Biology2020, volume: 26, number: 2, pages: 629-641
Authors' information
Aarhus University
Bastviken, David
Linköping University
Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment
Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment
University of Koblenz-Landau
Buffam, Ishi
University of Cincinnati
Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment
Klemedtsson, Leif
University of Gothenburg
Swedish University of Agricultural Sciences, Department of Forest Ecology and Management
Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment
Natchimuthu, Sivakiruthika
Linköping University
Swedish University of Agricultural Sciences, Department of Forest Ecology and Management
Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment
Wallin, Marcus B.
Uppsala University
Uppsala University
University of Cincinnati
Associated SLU-program
Forest
Eutrophication
Climate
Use of FOMA data
UKÄ Subject classification
Geochemistry
Environmental Sciences
Climate Research
Publication Identifiers
DOI: https://doi.org/10.1111/gcb.14812
URI (permanent link to this page)
https://res.slu.se/id/publ/103074