Skip to main content
SLU publication database (SLUpub)

Research article2020Peer reviewedOpen access

Dynamics of fungal and bacterial groups and their carbon sources during the growing season of maize in a long-term experiment

Shahbaz, Muhammad; Katterer, Thomas; Thornton, Barry; Borjesson, Gunnar


The relative contribution of different microbial groups to soil organic matter (SOM) turnover and utilisation of rhizodeposits during a cropping season has remained largely unknown. We used a long-term field experiment (started in 1956), in which C3 crops were replaced with C4 silage maize in 2000, to investigate dynamics of fungi and bacterial groups and their utilisation of 'young-C4' and 'old-C3' SOM-derived resource every second week during the cropping season (June-Oct). Treatments include bare fallow, unfertilised, fertilised with mineral N and fertilised with farmyard manure (FYM) addition. Extracted soil phospholipid fatty acids (PLFAs) were pooled into Gram-positive, Gram-negative bacteria and fungi (18:2 omega 6,9) groups and their delta C-13 values determined. Total PLFAs amount correlated to the SOM contents (highest in FYM) and increased over the cropping season in N-fertilised and FYM treatments. As a result of a peak in plant growth during a period with frequent rain events in August, delta C-13 of total PLFAs significantly increased from - 23.8 to - 21.6 parts per thousand and - 26.1 to - 24.7 parts per thousand, in N-fertilised and FYM addition, respectively. This clearly indicated a shift in microbial utilisation from old to young SOM sources, which was linked to increased soil moisture contents and fungal biomass. The abundance of Gram-positive increased and that of Gram-negative bacteria decreased until August and vice versa thereafter. The mean delta C-13 values of individual microbial groups were highest in fungi (corresponding to their seasonal biomass variation) followed by Gram-positive and Gram-negative bacteria. The results clearly demonstrated that irrespective of fertilisation type, fungi were the main players in seasonal SOM dynamics and were strongly influenced by soil moisture and phenological stage of the maize (i.e. rhizodeposition). Disentangling these microbial controls on C resources utilisation will be crucial for understanding C cycling during a cropping season or on an ecosystem scale.


C3; C4 vegetation shift; Long-term fertilisation; Microbial groups; PLFAs; Seasonal changes; Soil organic matter

Published in

Biology and Fertility of Soils
2020, Volume: 56, number: 6, pages: 759-770
Publisher: SPRINGER