Skip to main content
SLU publication database (SLUpub)

Other publication2020

Global dataset of ecohydrological parameters inferred from satellite observations

Bassiouni, Maoya

Abstract

This dataset contains global maps of (1) ecohydrological parameters for a theoretical model of the probability distribution of soil saturation;
(2) convergence, uncertainty and goodness-of-fit diagnostics; and
(3) soil water stress and uptake indexes, associated with analysis in: Bassiouni, M., Good S.P., W., Still, C. J., and Higgins, C.: Plant Water Uptake Thresholds Inferred from Satellite Soil Moisture, in preparation. All variable descriptions and units are included in the .nc metadata.

Abstract
Empirical functions are widely used in hydrological, agricultural, and earth system models to parameterize plant water uptake. We infer soil water potentials at which uptake is downregulated from its maximum rate and at which uptake is zero, in biomes with < 60% woody vegetation at 36-km grid resolution. We estimate thresholds through Bayesian inference using a stochastic water balance framework to construct theoretical soil moisture probability distributions consistent with satellite surface soil moisture. The global median Nash–Sutcliffe efficiency between empirical soil moisture distributions derived from satellite soil moisture observations and best-fit theoretical distributions using inferred parameters is 0.8. Spatially variable thresholds capture location-specific vegetation and climate characteristics and can be connected to biome-level water uptake strategies.

Published in

Publisher: Zenodo

SLU Authors

UKÄ Subject classification

Oceanography, Hydrology, Water Resources
Agricultural Science

Publication identifier

  • DOI: https://doi.org/10.5281/zenodo.3605620

Permanent link to this page (URI)

https://res.slu.se/id/publ/105932