Skip to main content
SLU publication database (SLUpub)

Research article2020Peer reviewed

Critical slope length for soil loss mitigation in maize-bean cropping systems in SW Kenya

Koomson, Eric; Muoni, Tarirai; Marohn, Carsten; Nziguheba, Generose; Öborn, Ingrid; Cadisch, Georg

Abstract

Soil erosion and land fragmentation threaten agricultural production of sub-Saharan African highlands. At our study site in Western Kenya, farm size is mostly < 2 ha, laid out in narrow strips in slope direction and ploughed downhill. Soil conservation measures like hedgerows and green manures can reduce effective slope length for erosion, but compete with crops for space and labour. Knowledge of critical slope length can minimise interventions and trade-offs. Hence, a maize-bean intercrop (MzBn) slope length trial on 20, 60 and 84 m long plots, replicated twice on three farms was carried out in Rongo, Migori County, during one rainy season. Soil loss from 84 m slope length (SL) plots was 250 % higher than from 60 m and 710% higher than from 20 m plots, while soil loss from 20 and 60 m plots did not differ (p < 0.05). Conversely, runoff was lower on the 84 m than on the 60 m (p < 0.05) or the 20 m SL (p < 0.05). Across all three farms slope gradient and length had highest explanatory power to predict soil loss. At individual farm level, under similar slope and soil texture, slope length and profile curvature were most influential. Regarding results of the slope length experiments, food crop plot lengths < 50 m appear essential considering soil loss, sediment load, and soil loss to yield ratio under the given rainfall, soil and slope (10-14%) conditions. Our results call for designing integrating slope length options and cropping systems for effective soil conservation. We recommend planting Mucuna and Calliandra-hedgerows as buffer strips below the critical slope length, and legume cash crops and maize uphill. Such approaches are critical against the backdrop of land fragmentation and labour limitation to sustainably maximise food production from the available land area in the region. (c) 2020 Elsevier B.V. All rights reserved.

Keywords

Slope length; Erosion; Legume; Acrisols

Published in

Geoderma
2020, Volume: 22, article number: e00311

      SLU Authors

      Sustainable Development Goals

      SDG2 Zero hunger

      UKÄ Subject classification

      Agricultural Science

      Publication identifier

      DOI: https://doi.org/10.1016/j.geodrs.2020.e00311

      Permanent link to this page (URI)

      https://res.slu.se/id/publ/106963