Research article - Peer-reviewed, 2020
Evaluating the accuracy of twoin situoptical sensors to estimate DOC concentrations for drinking water production
Hoffmeister, S.; Murphy, K. R.; Cascone, C.; Ledesma, J. L. J.; Kohler, S. J.Abstract
Twoin situoptical sensors, a single-excitation fluorescence-based sensor (fDOM) mounted on a multi-parameter EXO2 sonde (YSI), and a stand-alone, multispectral absorbance-based instrument (spectro::lyser, scan Messtechnik GmbH), were evaluated for their capability to (i) estimate river dissolved organic carbon (DOC) concentrations and (ii) provide oversight of drinking water production. The sensors were deployed between March and November 2017 in the river Fyris, which drains a mixed forested and agricultural 2003 km(2)catchment and serves as a drinking water source by managed aquifer recharge. Grab samples were collected every 2 to 3 weeks and compared with logged sensor data collected at 15 minute intervals. The fDOM probe signal was used to estimate DOC concentrations in the range of 10.4 to 24.4 mg L(-1)using linear regression (R-2= 0.71, RMSE = 2.5 mg L-1), after correction for temperature, turbidity and inner-filter effects. Temporal changes in DOC character associated with the mixed land use landscape, as indicated by optical indices, reduced this sensor accuracy for estimating DOC concentration. Nevertheless, humic substance concentrations, the fraction of DOC that is preferentially removed during artificial infiltration, were well captured. The spectrolyser signal was used to establish a 2-component partial least square model that captured DOC fluctuations from 10.2 to 29.4 mg L-1(R-2= 0.92; RMSE = 1.3 mg L-1). This multiple-wavelength model (220 to 720 nm) effectively handled the changes in DOC composition while accurately estimating DOC concentrations. This study explores the advantages and limitations of optical sensors for their use in managed aquifer recharge and drinking water production in relation to DOC levels.Published in
Environmental Science: Water Research & Technology2020, volume: 6, number: 10, pages: 2891-2901
Publisher: ROYAL SOC CHEMISTRY
Authors' information
Hoffmeister, Svenja
Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment
Hoffmeister, Svenja
Karlsruhe Institute of Technology
Murphy, K. R.
Chalmers University of Technology
Ledesma, Jose
Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment
Ledesma, Jose
Centre for Advanced Studies of Blanes (CEAB-CSIC)
Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment
Cascone, Claudia
Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment
Sustainable Development Goals
SDG6 Clean water
UKÄ Subject classification
Water Engineering
Publication Identifiers
DOI: https://doi.org/10.1039/d0ew00150c
URI (permanent link to this page)
https://res.slu.se/id/publ/108165