Skip to main content
SLU publication database (SLUpub)

Research article2022Peer reviewedOpen access

Phosphorus desorption and isotope exchange kinetics in agricultural soils

Braun, Sabina; McLaren, Timothy I.; Frossard, Emmanuel; Tuyishime, Marius; Börjesson, Gunnar; Gustafsson, Jon Petter


To improve phosphorus (P) fertilization and environmental assessments, a better understanding of release kinetics of solid-phase P to soil solution is needed. In this study, Fe (hydr)oxide-coated filter papers (Fh papers), isotopic exchange kinetics (IEK) and chemical extractions were used to assess the sizes of fast and slowly desorbing P pools in the soils of six long-term Swedish field experiments. The P desorption data from the Fh-paper extraction of soil (20 days of continual P removal) were fitted with the Lookman two-compartment desorption model, which estimates the pools of fast (Q(1)) and slowly (Q(2)) desorbing P, and their desorption rates k(1) and k(2). The amounts of isotope-exchangeable P (E) were calculated (E-1min to E->3 months) and compared with Q(1) and Q(2). The strongest relationship was found between E-1 min and Q(1) (r(2) = .87, p < .01). There was also an inverse relationship between the IEK parameter n (the rate of exchange) and k(1) (r(2) = .52, p < .01) and k(2) (r(2) = .52, p < .01), suggesting that a soil with a high value of n desorbs less P per time unit. The relationships between these results show that they deliver similar information, but both methods are hard to implement in routine analysis. However, Olsen-extractable P was similar in magnitude to Q(1) (P-Olsen = 1.1 x Q(1) + 2.3, r(2) = .96), n and k(1) were related to P-Olsen/P-CaCl2, while k(2) was related to P-oxalate/P-Olsen. Therefore, these extractions can be used to estimate the sizes and desorption rates of the different P pools, which could be important for assessments of plant availability and leaching.


fertiliser; long term trials; modelling; phosphate; soil analysis; soil improvement; soil use and management

Published in

Soil Use and Management
2022, Volume: 38, number: 1, pages: 515-527