Skip to main content
SLU publication database (SLUpub)

Research article2021Peer reviewed

Robustness of a meta-network to alternative habitat loss scenarios

Santos, Micaela; Cagnolo, Luciano; Roslin, Tomas; Ruperto, Emmanuel F.; Laura Bernaschini, Maria; Vazquez, Diego P.

Abstract

Studying how habitat loss affects the tolerance of ecological networks to species extinction (i.e. their robustness) is key for our understanding of the influence of human activities on natural ecosystems. With networks typically occurring as local interaction networks interconnected in space (a meta-network), we may ask how the loss of specific habitat fragments affects the overall robustness of the meta-network. To address this question, for an empirical meta-network of plants, herbivores and natural enemies we simulated the removal of habitat fragments in increasing and decreasing order of area, age and connectivity for plant extinction and the secondary extinction of herbivores, natural enemies and their interactions. Meta-network robustness was characterized as the area under the curve of remnant species or interactions at the end of a fragment removal sequence. To pinpoint the effects of fragment area, age and connectivity, respectively, we compared the observed robustness for each removal scenario against that of a random sequence. The meta-network was more robust to the loss of old (i.e. long-fragmented), large, connected fragments than of young (i.e. recently fragmented), small, isolated fragments. Thus, young, small, isolated fragments may be particularly important to the conservation of species and interactions, while contrary to our expectations larger, more connected fragments contribute little to meta-network robustness. Our findings highlight the importance of young, small, isolated fragments as sources of species and interactions unique to the regional level. These effects may largely result from an unpaid extinction debt, whereby younger fragments are likely to lose species over time. Yet, there may also be more long-lasting effects from cultivated lands (e.g. water, fertilizers and restricted cattle grazing) and network complexity in small, isolated fragments. Such fragments may sustain important biological diversity in fragmented landscapes, but maintaining their conservation value may depend on adequate restoration strategies.

Keywords

fragmented landscape; meta-network; plant–herbivore–natural enemy network; robustness

Published in

Oikos
2021, Volume: 130, number: 1, pages: 133-142
Publisher: WILEY

    Sustainable Development Goals

    SDG15 Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss

    UKÄ Subject classification

    Ecology

    Publication identifier

    DOI: https://doi.org/10.1111/oik.07835

    Permanent link to this page (URI)

    https://res.slu.se/id/publ/109039