Skip to main content
SLU publication database (SLUpub)

Research article2020Peer reviewedOpen access

Differences in spatial versus temporal reaction norms for spring and autumn phenological events

Delgado, Maria del Mar; Roslin, Tomas; Tikhonov, Gleb; Meyke, Evgeniy; Lo, Coong; Gurarie, Eliezer; Abadonova, Marina; Abduraimov, Ozodbek; Adrianova, Olga; Akimova, Tatiana; Akkiev, Muzhigit; Ananin, Aleksandr; Andreeva, Elena; Andriychuk, Natalia; Antipin, Maxim; Arzamascev, Konstantin; Babina, Svetlana; Babushkin, Miroslav; Bakin, Oleg; Barabancova, Anna;
Show more authors

Abstract

For species to stay temporally tuned to their environment, they use cues such as the accumulation of degree-days. The relationships between the timing of a phenological event in a population and its environmental cue can be described by a population-level reaction norm. Variation in reaction norms along environmental gradients may either intensify the environmental effects on timing (cogradient variation) or attenuate the effects (countergradient variation). To resolve spatial and seasonal variation in species' response, we use a unique dataset of 91 taxa and 178 phenological events observed across a network of 472 monitoring sites, spread across the nations of the former Soviet Union. We show that compared to local rates of advancement of phenological events with the advancement of temperature-related cues (i.e., variation within site over years), spatial variation in reaction norms tend to accentuate responses in spring (cogradient variation) and attenuate them in autumn (countergradient variation). As a result, among-population variation in the timing of events is greater in spring and less in autumn than if all populations followed the same reaction norm regardless of location. Despite such signs of local adaptation, overall phenotypic plasticity was not sufficient for phenological events to keep exact pace with their cues-the earlier the year, the more did the timing of the phenological event lag behind the timing of the cue. Overall, these patterns suggest that differences in the spatial versus temporal reaction norms will affect species' response to climate change in opposite ways in spring and autumn.

Keywords

chilling; climate change; heating; phenology; plasticity

Published in

Proceedings of the National Academy of Sciences of the United States of America
2020, Volume: 117, number: 49, pages: 31249-31258 Publisher: NATL ACAD SCIENCES

    Sustainable Development Goals

    SDG13 Climate action

    UKÄ Subject classification

    Ecology

    Publication identifier

    DOI: https://doi.org/10.1073/pnas.2002713117

    Permanent link to this page (URI)

    https://res.slu.se/id/publ/110095