Skip to main content
Research article - Peer-reviewed, 2003

NIR spectroscopic measurement of moisture content in Scots pine seeds

Lestander TA, Geladi P

Abstract

When tree seeds are used for seedling production it is important that they are of high quality in order to be viable. One of the factors influencing viability is moisture content and an ideal quality control system should be able to measure this factor quickly for each seed. Seed moisture content within the range 3-34% was determined by near-infrared (NIR) spectroscopy on Scots pine (Pinus sylvestris L.) single seeds and on bulk seed samples consisting of 40-50 seeds. The models for predicting water content from the spectra were made by partial least squares (PLS) and ordinary least squares (OLS) regression. Different conditions were simulated involving both using less wavelengths and going from samples to single seeds. Reflectance and transmission measurements were used. Different spectral pretreatment methods were tested on the spectra. Including bias, the lowest prediction errors for PLS models based on reflectance within 780-2280 nm from bulk samples and single seeds were 0.8% and 1.9%, respectively. Reduction of the single seed reflectance spectrum to 850-1048 nm gave higher biases and prediction errors in the test set. In transmission (850-1048 nm) the prediction error was 2.7% for single seeds. OLS models based on simulated 4-sensor single seed system consisting of optical filters with Gaussian transmission indicated more than 3.4% error in prediction. A practical F-test based on test sets to differentiate models is introduced

Published in

Analyst
2003, Volume: 128, number: 4, pages: 389-396
Publisher: ROYAL SOC CHEMISTRY