Skip to main content
Research article - Peer-reviewed, 2021

Genome-Wide Association Analysis and Genomic Prediction for Adult-Plant Resistance to Septoria Tritici Blotch and Powdery Mildew in Winter Wheat

Alemu, Admas; Brazauskas, Gintaras; Gaikpa, David S.; Henriksson, Tina; Islamov, Bulat; Jorgensen, Lise Nistrup; Koppel, Mati; Koppel, Reine; Liatukas, Zilvinas; Svensson, Jan T.; Chawade, Aakash

Abstract

Septoria tritici blotch (STB) caused by the fungal pathogen Zymoseptoria tritici and powdery mildew (PM) caused by Blumeria graminis f.sp tritici (Bgt) are among the forefront foliar diseases of wheat that lead to a significant loss of grain yield and quality. Resistance breeding aimed at developing varieties with inherent resistance to STB and PM diseases has been the most sustainable and environment-friendly approach. In this study, 175 winter wheat landraces and historical cultivars originated from the Nordic region were evaluated for adult-plant resistance (APR) to STB and PM in Denmark, Estonia, Lithuania, and Sweden. Genome-wide association study (GWAS) and genomic prediction (GP) were performed based on the adult-plant response to STB and PM in field conditions using 7,401 single-nucleotide polymorphism (SNP) markers generated by 20K SNP chip. Genotype-by-environment interaction was significant for both disease scores. GWAS detected stable and environment-specific quantitative trait locis (QTLs) on chromosomes 1A, 1B, 1D, 2B, 3B, 4A, 5A, 6A, and 6B for STB and 2A, 2D, 3A, 4B, 5A, 6B, 7A, and 7B for PM adult-plant disease resistance. GP accuracy was improved when assisted with QTL from GWAS as a fixed effect. The GWAS-assisted GP accuracy ranged within 0.53-0.75 and 0.36-0.83 for STB and PM, respectively, across the tested environments. This study highlights that landraces and historical cultivars are a valuable source of APR to STB and PM. Such germplasm could be used to identify and introgress novel resistance genes to modern breeding lines.

Keywords

wheat; Septoria tritici blotch; powdery mildew; GWAS; genomic prediction; genebank

Published in

Frontiers in Genetics
2021, volume: 12, article number: 661742
Publisher: FRONTIERS MEDIA SA

Authors' information

Swedish University of Agricultural Sciences, Department of Plant Breeding
Brazauskas, Gintaras
Lithuanian Research Centre for Agriculture and Forestry
Swedish University of Agricultural Sciences, Department of Plant Breeding
Henriksson, Tina
Lantmännen Lantbruk
Islamov, Bulat
Estonian Crop Research Institute
Nistrup Jørgensen, Lise
Aarhus University
Koppel, Mati
Estonian University of Life Sciences
Koppel, Reine
Estonian Crop Research Institute
Liatukas, Žilvinas
Lithuanian Research Centre for Agriculture and Forestry
Svensson, Jan T.
Nord Genet Resource Ctr NordGen
Swedish University of Agricultural Sciences, Department of Plant Breeding

UKÄ Subject classification

Genetics and Breeding

Publication Identifiers

DOI: https://doi.org/10.3389/fgene.2021.661742

URI (permanent link to this page)

https://res.slu.se/id/publ/112236