Skip to main content
SLU publication database (SLUpub)

Research article2021Peer reviewedOpen access

A Contraction Based Solution for the Improvement of Fish Ladder Attraction Flow

Angele, Kristian; Andreasson, Patrik; Forssen, Ake; Aldven, David; Hellström, Gustav; Leonardsson, Kjell


A new, potentially cost efficient, concept for improving the attraction flow to a fish ladder has been investigated in a case study. For the upstream migrating Atlantic salmon to reach the fish ladder and by-pass the case study hydropower plant, it must be able to localize the attraction flow where it enters the main flow from the tailrace of the hydropower plant in the so-called confluence area. Here the comparatively small and limited attraction flow from the old river channel must be improved in order to be able compete with the substantially larger main flow. The objective of the present study is to investigate the feasibility of a new concept for further improvement of the attraction flow using guiding walls forming a contraction channel. Field measurements were performed tracing tagged fish in the confluence area downstream of the case study hydropower plant in order to understand the movement pattern of the fish. Based on the results, and results from bathymetry measurements in the same area, a physical scale model was constructed where it was experimentally demonstrated that it is hydraulically feasible to construct guiding walls, forming a contraction, which accelerate the attraction flow and generate a concentrated turbulent jet with a higher velocity, while keeping the flow rate unchanged. The attraction flow penetrates about half-way (70 m) into the main flow and reaches the position where most fish are positioned according to fish position measurements and therefore potentially has a good ability to attract upstream migrating fish. There is no negative impact on the water level in the confluence area and thereby not on electricity production. It was shown that the results can be scaled up to prototype conditions and the strategy can presumably be generalized to similar flow situations, existing at other hydropower plants, allowing for improved upstream fish migration in coexistence with a sound hydropower production.


attraction flow; salmon; fish migration; acoustic telemetry; physical scale model test; hydropower

Published in

American Journal of Water Science and Engineering
2021, Volume: 7, number: 2, pages: 57-71