Skip to main content
SLU publication database (SLUpub)

Research article2022Peer reviewed

Remote sensing-based biomass estimation of dry deciduous tropical forest using machine learning and ensemble analysis

Singh, Chandrakant; Karan, Shivesh Kishore; Sardar, Purnendu; Samadder, Sukha Ranjan

Abstract

Forests play a vital role in maintaining the global carbon balance. However, globally, forest ecosystems are increasingly threatened by climate change and deforestation in recent years. Monitoring forests, specifically forest biomass is essential for tracking changes in carbon stocks and the global carbon cycle. However, developing countries lack the capacity to actively monitor forest carbon stocks, which ultimately adds uncertainties in estimating country specific contribution to the global carbon emissions. In India, authorities use field-based measurements to estimate biomass, which becomes unfeasible to implement at finer scales due to higher costs. To address this, the present study proposed a framework to monitor above-ground biomass (AGB) at finer scales using open-source satellite data. The framework integrated four machine learning (ML) techniques with field surveys and satellite data to provide continuous spatial estimates of AGB at finer resolution. The application of this framework is exemplified as a case study for a dry deciduous tropical forest in India. The results revealed that for wet season Sentinel-2 satellite data, the Random Forest (adjusted R-2 = 0.91) and Artificial Neural Network (adjusted R-2 = 0.77) ML models were better-suited for estimating AGB in the study area. For dry season satellite data, all the ML models failed to estimate AGB adequately (adjusted R-2 between-0.05 - 0.43). Ensemble analysis of ML predictions not only made the results more reliable, but also quantified spatial uncertainty in the predictions as a metric to identify its robustness.

Keywords

Non-parametric models; Pixel-based approach; Sentinal-2; Terrestrial carbon stock; Uncertainty mapping

Published in

Journal of Environmental Management
2022, Volume: 308, article number: 114639
Publisher: ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD

    Sustainable Development Goals

    SDG9 Industry, innovation and infrastructure
    SDG15 Life on land
    SDG17 Partnerships for the goals

    UKÄ Subject classification

    Remote Sensing

    Publication identifier

    DOI: https://doi.org/10.1016/j.jenvman.2022.114639

    Permanent link to this page (URI)

    https://res.slu.se/id/publ/117167