Skip to main content
SLU publication database (SLUpub)

Research article2022Peer reviewedOpen access

Sharing pain: Using pain domain transfer for video recognition of low grade orthopedic pain in horses

Broome, Sofia; Ask, Katrina; Rashid-Engstrom, Maheen; Andersen, Pia Haubro; Kjellstrom, Hedvig


Orthopedic disorders are common among horses, often leading to euthanasia, which often could have been avoided with earlier detection. These conditions often create varying degrees of subtle long-term pain. It is challenging to train a visual pain recognition method with video data depicting such pain, since the resulting pain behavior also is subtle, sparsely appearing, and varying, making it challenging for even an expert human labeller to provide accurate ground-truth for the data. We show that a model trained solely on a dataset of horses with acute experimental pain (where labeling is less ambiguous) can aid recognition of the more subtle displays of orthopedic pain. Moreover, we present a human expert baseline for the problem, as well as an extensive empirical study of various domain transfer methods and of what is detected by the pain recognition method trained on clean experimental pain in the orthopedic dataset. Finally, this is accompanied with a discussion around the challenges posed by real-world animal behavior datasets and how best practices can be established for similar fine-grained action recognition tasks. Our code is available at

Published in

2022, Volume: 17, number: 3, article number: e0263854