Skip to main content
Research article - Peer-reviewed, 2022

Use of Hydrological Models to Predict Risk for Rutting in Logging Operations

Mohtashami, Sima; Thierfelder, Tomas; Eliasson, Lars; Lindstrom, Goran; Sonesson, Johan

Abstract

Using hydrological models with a high temporal resolution to predict risk for rutting may be a possible method to improve planning of forwarder trails or to schedule logging operations in sites with low bearing capacity to periods when soil moisture content is at a minimum. We have studied whether descriptions of rut variations, collected in 27 logging sites, can be improved by using hydrological data, modeled by Swedish HYdrological Prediction for Environment (S-HYPE). Other explanatory variables, such as field-surveyed data and spatial data, were also used to describe rut variations within and across logging sites. The results indicated that inclusion of S-HYPE data led to only marginal improvement in explaining the observed variations of the ruts in terms of both "rut depths" within the logging sites and "proportion of forwarder trails with ruts" across the logging sites. However, application of S-HYPE data for adapting depth-to-water (DTW) maps to temporal changes of soil moisture content may be a way to develop more dynamic soil moisture maps for forestry applications.

Keywords

rut formation; forestry operations; hydrological data

Published in

Forests
2022, volume: 13, number: 6, article number: 901

Authors' information

Forestry Research Institute of Sweden, Skogforsk
Swedish University of Agricultural Sciences, Department of Energy and Technology
Eliasson, Lars
Skogforsk
Lindstrom, Goran
Swedish Meteorological and Hydrological Institute
Sonesson, Johan
Skogforsk

UKÄ Subject classification

Forest Science

Publication Identifiers

DOI: https://doi.org/10.3390/f13060901

URI (permanent link to this page)

https://res.slu.se/id/publ/117441