Skip to main content
Research article - Peer-reviewed, 2022

Genome-wide analyses of the mung bean NAC gene family reveals orthologs, co-expression networking and expression profiling under abiotic and biotic stresses

Tariq, Rezwan; Hussain, Ammara; Tariq, Arslan; Khalid, Muhammad Hayder Bin; Khan, Imran; Basim, Huseyin; Ingvarsson, Par K.


Background Mung bean is a short-duration and essential food crop owing to its cash prominence in Asia. Mung bean seeds are rich in protein, fiber, antioxidants, and phytonutrients. The NAC transcription factors (TFs) family is a large plant-specific family, participating in tissue development regulation and abiotic and biotic stresses. Results In this study, we perform genome-wide comparisons of VrNAC with their homologs from Arabidopsis. We identified 81 NAC transcription factors (TFs) in mung bean genome and named as per their chromosome location. A phylogenetic analysis revealed that VrNACs are broadly distributed in nine groups. Moreover, we identified 20 conserved motifs across the VrNACs highlighting their roles in different biological process. Based on the gene structure of the putative VrNAC and segmental duplication events might be playing a vital role in the expansion of mung bean genome. A comparative phylogenetic analysis of mung bean NAC together with homologs from Arabidopsis allowed us to classify NAC genes into 13 groups, each containing several orthologs and paralogs. Gene ontology (GO) analysis categorized the VrNACs into biological process, cellular components and molecular functions, explaining the functions in different plant physiology processes. A gene co-expression network analysis identified 173 genes involved in the transcriptional network of putative VrNAC genes. We also investigated how miRNAs potentially target VrNACs and shape their interactions with proteins. VrNAC1.4 (Vradi01g03390.1) was targeted by the Vra-miR165 family, including 9 miRNAs. Vra-miR165 contributes to leaf development and drought tolerance. We also performed qRT-PCR on 22 randomly selected VrNAC genes to assess their expression patterns in the NM-98 genotype, widely known for being tolerant to drought and bacterial leaf spot disease. Conclusions This genome-wide investigation of VrNACs provides a unique resource for further detailed investigations aimed at predicting orthologs functions and what role the play under abiotic and biotic stress, with the ultimate aim to improve mung bean production under diverse environmental conditions.


Mung bean; NAC; Transcription factor; Phylogeny; Co-expression network; Gene ontology; Biological process

Published in

BMC Plant Biology
2022, volume: 22, article number: 343
Publisher: BMC

Authors' information

Tariq, Rezwan
Akdeniz University
Hussain, Ammara
University of Okara
Tariq, Arslan
COMSATS University Islamabad (CUI)
Khalid, Muhammad Hayder Bin
Sichuan Agricultural University
Khalid, Muhammad Hayder Bin
Islamia University of Bahawalpur
Khan, Imran
College of Pastoral Agriculture Science and Technology
Basim, Huseyin
Akdeniz University
Swedish University of Agricultural Sciences, Department of Plant Biology

Sustainable Development Goals

SDG2 Zero hunger

UKÄ Subject classification

Plant Biotechnology
Agricultural Science

Publication Identifiers


URI (permanent link to this page)