Skip to main content
SLU publication database (SLUpub)
Research article - Peer-reviewed, 2022

Full-lactation performance of multiparous dairy cows with differing residual feed intake

Karlsson, Johanna; Danielsson, Rebecca; Åkerlind, Maria; Holtenius, Kjell

Abstract

Residual feed intake (RFI) is an efficiency trait underpinning profitability and environmental sustainability in dairy production. This study compared performance during a complete lactation of 36 multiparous dairy cows divided into three equal-sized groups with high (HRFI), intermediate (IRFI) or low RFI (LRFI). Residual feed intake was determined by two different equations. Residual feed intake according to the NorFor system was calculated as (RFINorFor) = (NEintake)–(NEmaintenance + NEgestation + NEmilk—NEmobilisation + NEdeposition). Residual feed intake according to the USA National Research Council (NRC) (RFINRC) was calculated as: RFI = DMI − predicted DMI where predicteds DMI = [(0.372× ECM)+(0.0968×BW0.75)]×(1−e−0.192×(DIM/7+3.67)). Cows in the HRFINorFor group showed higher daily CH4 production, CH4/ECM and CH4 yield (g/kg DMI) than IRFINorFor and LRFINorFor cows. Cows characterized by high efficiency (LRFINorFor) according to the NorFor system had lower body weight. Dry matter intake and apparent dry matter digestibility were not affected by efficiency group but milk yield was lower in the low efficiency, HRFINorFor, group. Cows characterized by high efficiency according to the NRC system (LRFINRC) had lower dry matter intake while yield of CH4 was higher. Daily CH4 production and CH4 g/kg ECM did not differ between RFINRC groups. Dairy cows characterized by high efficiency (both LRFINorFor and LRFINRC cows) over a complete lactation mobilized more of their body reserves in early lactation as well as during the complete lactation. The results also indicated great phenotypic variation in RFI between different stages the lactation.

Keywords

Lactation; Milk; Insulin; Glucose; Blood plasma; Body weight; Computer software; Fatty acids

Published in

PLoS ONE
2022, Volume: 17, number: 8, article number: e0273420