Skip to main content
SLU publication database (SLUpub)

Research article2022Peer reviewedOpen access

How to consider the effects of time of day, beam strength, and snow cover in ICESat-2 based estimation of boreal forest biomass?

Varvia, P.; Korhonen, L.; Bruguiere, A.; Toivonen, J.; Packalen, P.; Maltamo, M.; Saarela, S.; Popescu, S. C.


The objective of this study was to explore the effects of (1) the presence/absence of snow and snow depth, (2) solar noise, i.e., day/night and sun angle observations, and (3) strong/weak beam differences on ICESat2 data in the context of data utility for forest AGB estimation. The framework of the study is multiphase modeling, where AGB field data and wall-to-wall airborne laser scanning (ALS) and Sentinel-2 data are used to produce proxy ALS plots on ICESat-2 track positions. Models between the predicted proxy AGB and the ICESat-2 photon data are then formulated and evaluated by subsets, such as only strong beam data captured in snowy conditions.Our results indicate that, if possible, strong beam night data from snowless conditions should be used in AGB estimation, because our models showed clearly smallest RMSE (26.9%) for this data subset. If more data are needed, we recommend using only strong beam data and constructing separate models for the different data subsets. In the order of increasing RMSE%, the next best options were snow/night/strong (30.4%), snow/day/strong (33.5%), and snowless/day/strong (34.1%). Weak beam data from snowy night conditions could also be used if necessary (31.0%).


ICESat-2; Above-ground biomass; Boreal forest; Mixed-effect models; Lidar

Published in

Remote Sensing of Environment
2022, Volume: 280, article number: 113174

    UKÄ Subject classification

    Remote Sensing
    Forest Science

    Publication identifier


    Permanent link to this page (URI)