Skip to main content
SLU publication database (SLUpub)

Research article2022Peer reviewedOpen access

Genetic diversity in gooseberry (Ribes uva-crispa), as estimated with SSR markers

Nordlander, Josefine; af Satra, Jonas Skytte; Mattisson, Helena; Udovychenko, Kateryna; Lushpigan, Olga; Lose, Lasse; Naess, Hans; Leino, Matti; Hjalmarsson, Inger; Garkava-Gustavsson, Larisa

Abstract

European gooseberry (Ribes uva-crispa L.) is a popular berry crop in many European countries, including Sweden, Denmark and Ukraine. There is no active gooseberry breeding programme in either Sweden or Denmark, but a successful programme is operating in Ukraine. In Sweden and Denmark, research on gooseberries is primarily focused on collection and phenotypic evaluation of genetic resources. As part of these activities, a large number of inventory finds have been collected but have not yet been characterised morphologically or molecularly. The goal of this study was thus to characterise gooseberry germplasm with 15 simple sequence repeat (SSR) markers. From 242 accessions analysed, 153 unique genotypes were identified. Cultivars that have been in widespread cultivation in Sweden, such as the Finnish cultivars 'Hinnonma & BULL;en Keltainen' and 'Hinnonma & BULL;en Punainen', had relatively large numbers of synonymous samples. While many inventory finds were identifiable as synonyms of known cultivars, several were found to constitute unique genotypes within the germplasm studied. The studied genotypes clustered relatively well in three posterior groups, consisting of cultivars originating before and after the American gooseberry mildew (Sphaerotheca mors-uvae) outbreak around 1900 and cultivars originating from the territory of the former Soviet Union. A fourth genetic cluster consisting mainly of inventory finds from central and northern Sweden was also identified. In addition, it was possible to verify recorded and stipulated parentages for some of the cultivars studied and to identify three likely parent-parent-child trios. Thus, inventories of local gooseberry germplasm and a subsequent genotyping proved successful in finding unique local genotypes, with potential local adaptation. The data obtained provide a foundation for future studies of gooseberry genetic re-sources, while also illustrating the importance of a well-curated and phenotypically characterised set of reference cultivars for future studies.

Keywords

Gooseberry; Ribes; Genetic diversity; Gene bank; Heirloom cultivars

Published in

Scientia Horticulturae
2022, Volume: 306, article number: 111438Publisher: ELSEVIER