Skip to main content
SLU publication database (SLUpub)

Research article2022Peer reviewed

Differential Changes in Circulating Steroid Hormones in Hibernating Brown Bears: Preliminary Conclusions and Caveats

Frøbert, Anne Mette; Toews, Julia N. C.; Nielsen, Claus G.; Brohus, Malene; Kindberg, Jonas; Jessen, Niels; Fröbert, Ole; Hammond, Geoffrey L.; Overgaard, Michael T.

Abstract

Brown bears are obese when they enter the den, and after 6 mo of hibernation and physical inactivity, bears show none of the adverse consequences of a sedentary lifestyle in humans, such as cardiovascular disease, type 2 diabetes, and kidney failure. The metabolic mechanisms that drive hibernation physiology in bears are poorly defined, but systemic endocrine regulators are likely involved. To investigate the potential role of steroid hormones, we quantified the total levels of 12 steroid hormones, the precursor cholesterol, sex hormone-binding globulin (SHBG), and corticosterone-binding globulin (CBG) in paired serum samples from subadult free-ranging Scandinavian brown bears during the active and hibernation states. During hibernation, androstenedione and testosterone were significantly decreased in subadult female bears (n=13), whereas they increased in all males but one (n=6) and therefore did not reach a significant difference. Despite this difference, SHBG increased more than 20-fold during hibernation for all bears. Compared with SHBG concentrations in humans, bear levels were very low in the active state, but during hibernation, levels equaled high levels in humans. The increased SHBG levels likely maintain a state of relative quiescence of the reproductive hormones in hibernating bears. Interestingly, the combination of SHBG and testosterone levels results in similar free bioavailable testosterone levels of 70-80 pM in both subadult and adult sexually active male bears, suggesting a role for SHBG in controlling androgen action during hibernation in males. Dehydroepiandrosterone sulfate, dihydrotestosterone, and estradiol levels were below the detection limit in all but one animal. The metabolically active glucocorticoids were significantly higher in both sexes during hibernation, whereas the inactive metabolite cortisone was reduced and CBG was low approaching the detection limit. A potential caveat is that the glucocorticoid levels might be affected by the ketamine applied in the anesthetic mixture for hibernating bears. However, increased hibernating cortisol levels have consistently been reported in both black bears and brown bears. Thus, we suggest that high glucocorticoid activity may support the hibernation state, likely serving to promote lipolysis and gluconeogenesis while limiting tissue glucose uptake to maintain a continuous glucose supply to the brain.

Keywords

corticosteroid-binding globulin (CBG); corticosteroids; hibernation; progestogens; sex hormone-binding globulin (SHBG); sex hormones; steroids; Ursus arctos

Published in

Physiological and Biochemical Zoology
2022, Volume: 95, number: 5, pages: 365-378

    Sustainable Development Goals

    Ensure healthy lives and promote well-being for all at all ages

    UKÄ Subject classification

    Zoology

    Publication identifier

    DOI: https://doi.org/10.1086/721154

    Permanent link to this page (URI)

    https://res.slu.se/id/publ/120312