Skip to main content
SLU publication database (SLUpub)

Research article2022Peer reviewedOpen access

Characterization of Pipistrellus pygmaeus Bat Virome from Sweden

Cholleti, Harindranath; de Jong, Johnny; Blomstrom, Anne-Lie; Berg, Mikael

Abstract

Increasing amounts of data indicate that bats harbor a higher viral diversity relative to other mammalian orders, and they have been recognized as potential reservoirs for pathogenic viruses, such as the Hendra, Nipah, Marburg, and SARS-CoV viruses. Here, we present the first viral metagenomic analysis of Pipistrellus pygmaeus from Uppsala, Sweden. Total RNA was extracted from the saliva and feces of individual bats and analyzed using Illumina sequencing. The results identified sequences related to 51 different viral families, including vertebrate, invertebrate, and plant viruses. These viral families include Coronaviridae, Picornaviridae, Dicistroviridae, Astroviridae, Hepeviridae, Reoviridae, Botourmiaviridae, Lispviridae, Totiviridae, Botoumiaviridae, Parvoviridae, Retroviridae, Adenoviridae, and Partitiviridae, as well as different unclassified viruses. We further characterized three near full-length genome sequences of bat coronaviruses. A phylogenetic analysis showed that these belonged to alphacoronaviruses with the closest similarity (78–99% at the protein level) to Danish and Finnish bat coronaviruses detected in Pipistrellus and Myotis bats. In addition, the full-length and the near full-length genomes of picornavirus were characterized. These showed the closest similarity (88–94% at the protein level) to bat picornaviruses identified in Chinese bats. Altogether, the results of this study show that Swedish Pipistrellus bats harbor a great diversity of viruses, some of which are closely related to mammalian viruses. This study expands our knowledge on the bat population virome and improves our understanding of the evolution and transmission of viruses among bats and to other species.

Keywords

bat; metagenomics; virome; coronavirus; Sweden

Published in

Viruses
2022, Volume: 14, number: 8, article number: 1654