Maheshwari, Arpita
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences
Research article2023Peer reviewedOpen access
Maheshwari, Arpita; Jones, Christopher M.; Tiemann, Maren; Hallin, Sara
Agricultural soils are a main source of nitrous oxide (N2O), a potent greenhouse gas and the dominant ozone -depleting substance emitted to the atmosphere. The only known sink of N2O in soil is the microbial reduction of N2O to N2. Carbon (C) availability is a key factor in determining microbial community composition in soil. However, its role in shaping the structure of N2O reducing communities in soil is unexplored. In this study, a microcosm experiment was set up in which two arable soils with contrasting edaphic properties were incubated anaerobically for 83 days with four different C substrates: glucose, acetate, hydroxyethylcellulose (HEC) and mixture of the three. We show that the effect of C addition on the abundance and diversity of clade I and clade II nosZ genes, encoding different variants of the N2O reductase, varies across the different C substrates differently in contrasting soil types, yet still plays an important role in selecting specific taxa of N2O reducers under deni-trifying conditions. We observed an increase of betaproteobacterial clade I and II N2O reducing species with addition of HEC, whereas alphaproteobacterial clade I species and clade II species within other Proteobacteria and Bacteriodetes were associated with glucose and acetate. These results show that specific C-substrates select for certain lineages of nitrous oxide reducers and influence patterns of niche partitioning within clades of N2O reducers, whereas other soil factors drive differences between clade I and II nosZ communities.
Nitrous oxide reducers; nosZ clade I; nosZ clade II; Carbon preferences; Denitrification
Soil Biology and Biochemistry
2023, Volume: 177, article number: 108909
Microbiology
Soil Science
Ecology
DOI: https://doi.org/10.1016/j.soilbio.2022.108909
https://res.slu.se/id/publ/120714