Castaño Soler, Carles
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences
Research article2023Peer reviewedOpen access
Centenaro, Giada; de Miguel, Sergio; Amouzgar, Laleh; Pinuela, Yasmine; Son, Deokjoo; Antonio Bonet, Jose; Martinez de Aragon, Juan; Dashevskaya, Svetlana; Castano, Carles; Alday, Josu G.
Understorey vegetation plays a key role in Mediterranean forest ecosystem functioning. However, we still lack a thorough understanding of the patterns and drivers of understorey composition and diversity. As a result, understoreys are often ignored during assessments of forest functioning under climate change. Here we studied the effect of silvicultural man-agement, topography, soil fungal community composition and soil physical and chemical properties on understorey com-munity composition and diversity. The plant cover and number of individuals of understorey perennial plants, shrubs and non-dominant trees was recorded on 24 plots (paired: control-thinned) in a Mediterranean pine-dominated mountainous area in Northeast Spain. The study area represented a broad thinning intensity gradient (from 0 to 70 a/o in removed stand basal area) along a 400-m altitudinal range (from 609 m to 1013 m). Our results showed that thinning intensity and topography explained the greatest proportion of the total variance in the understorey species composition, i.e., 18 a/o and 16 a/o, respectively. Interestingly, the effects of the silvicultural treatments were significant only when considering the altitudinal effect, so that, the main impacts of thinning on the understorey community composition occurred at low altitudes (between 609 m and 870 m). Moreover, we found a significant decrease in both richness and abundance of understorey species in both the control and thinned plots with increasing altitude, with thinned plots being signifi-cantly richer in species compared to the control plots. The difference in the understorey community sensitivity to forest thinning along the altitudinal gradient suggests changes in factors that limit plant growth. Low elevation plots were restrained by light availability while high altitudes plots limited by winter freezing temperature.
Understorey vegetation; Pinus pinaster; Altitude; Forest thinning; Shrub diversity
Science of the Total Environment
2023, Volume: 858, article number: 159860Publisher: ELSEVIER
SLU Plant Protection Network
SLU Forest Damage Center
SDG15 Life on land
Forest Science
DOI: https://doi.org/10.1016/j.scitotenv.2022.159860
https://res.slu.se/id/publ/120785