Skip to main content
SLU publication database (SLUpub)

Research article2023Peer reviewed

Application of regression and artificial neural network analysis of Red-Green-Blue image components in prediction of chlorophyll content in microalgae

Tang, Doris Ying Ying; Chew, Kit Wayne; Ting, Huong-Yong; Sia, Yuk-Heng; Gentili, Francesco G.; Park, Young-Kwon; Banat, Fawzi; Culaba, Alvin B.; Ma, Zengling; Show, Pau Loke

Abstract

This study presented a novel methodology to predict microalgae chlorophyll content from colour models using linear regression and artificial neural network. The analysis was performed using SPSS software. Type of extractant solvents and image indexes were used as the input data for the artificial neural network calculation. The findings revealed that the regression model was highly significant, with high R2 of 0.58 and RSME of 3.16, making it a useful tool for predicting the chlorophyll concentration. Simultaneously, artificial neural network model with R2 of 0.66 and low RMSE of 2.36 proved to be more accurate than regression model. The model which fitted to the experimental data indicated that acetone was a suitable extraction solvent. In comparison to the cyan-magenta-yellow-black model in image analysis, the red-greenblue model offered a better correlation. In short, the estimation of chlorophyll concentration using prediction models are rapid, more efficient, and less expensive.

Keywords

Chlorophyll; Microalgae; Prediction; Multilayer perceptron; Regression

Published in

Bioresource Technology
2023, Volume: 370, article number: 128503Publisher: ELSEVIER SCI LTD

    UKÄ Subject classification

    Bioinformatics (Computational Biology)
    Other Industrial Biotechnology

    Publication identifier

    DOI: https://doi.org/10.1016/j.biortech.2022.128503

    Permanent link to this page (URI)

    https://res.slu.se/id/publ/121161