Skip to main content
Research article - Peer-reviewed, 2023

Chemical composition, particle geometry, and micro-mechanical strength of barley husks, oat husks, and wheat bran as alternative raw materials for particleboards

Neitzel, Nicolas; Eder, Michaela; Hosseinpourpia, Reza; Walther, Thomas; Adamopoulos, Stergios


Particleboards are used worldwide in various industry segments, like construction and furniture production. Nevertheless, increase in wood prices and logistical challenges urge the particleboard industry to find alternative raw materials. By-products and residues from the agricultural and food industries could offer possibilities for material sourcing at a local level. This study aimed to investigate the chemical composition, particle geometry, anatomical structure, and microtensile characteristics of such material, specifically barley husks (BH), oat husks (OH), and wheat bran (WB). BH and OH were found to have comparable hemicelluloses and lignin contents to industrial wood chips but contained more ash. WB was rich in extractives and showed high buffering capacity. Light microscopy and microcomputed tomography revealed details of leaf structure for BH and OH as well as the multi-layer structure of WB. The ultimate microtensile strength of BH, various OH samples, and WB were respectively 2.77 GPa, 0.84-2.42 GPa, and 1.45 GPa. The results indicated that the studied materials could have potential uses as furnish materials in non-load bearing particleboards, where thermal or acoustic insulation properties are desirable.


Agro-industry residues; Chemical composition; Particle geometry; SEM; X-ray microcomputed tomography; Microtensile strength

Published in

Materials Today Communications
2023, Volume: 36, article number: 106602