Skip to main content
SLU publication database (SLUpub)

Research article2022Peer reviewedOpen access

Rapid extraction of high- and low-density microplastics from soil using high-gradient magnetic separation

Ramage, Stuart J. F. F.; Pagaling, Eulyn; Haghi, Reza K.; Dawson, Lorna A.; Yates, Kyari; Prabhu, Radhakrishna; Hillier, Stephen; Devalla, Sandhya

Abstract

Microplastics (MPs) are present in all environments, and concerns over their possible detrimental effects on flora and fauna have arisen. Density separation (DS) is commonly used to separate MPs from soils to allow MP quantification; however, it frequently fails to extract high-density MPs sufficiently, resulting in under-estimation of MP abundances. In this proof-of-concept study, a novel three-stage extraction method was developed, involving high-gradient magnetic separation and removal of magnetic soil (Stage 1), magnetic tagging of MPs using surface modified iron nanoparticles (Stage 2), and high-gradient magnetic recovery of surface-modified MPs (Stage 3). The method was optimised for four different soil types (loam, high-carbon loamy sand, sandy loam and high-clay sandy loam) spiked with different MP types (polyethylene, polyethylene terephthalate, and polytetrafluoroethylene) of different particle sizes (63 mu m to 2 mm) as well as polyethylene fibres (2-4 mm). The optimised method achieved average recoveries of 96% for fibres and 92% for particles in loam, 91% for fibres and 87% for particles in high-carbon loamy sand, 96% for fibres and 89% for particles in sandy loam, and 97% for fibres and 94% for particles in high-clay sandy loam. These were significantly higher than recoveries achieved by DS, particularly for fibres and high-density MPs (p < 0.05). To demonstrate the practical application of the HGMS method, it was applied to a farm soil sample, and high-density MP particles were only recovered by HGMS. Furthermore, this study showed that HGMS can recover fibre-aggregate complexes. This improved extraction method will provide better estimates of MP quantities in future studies focused on monitoring the prevalence of MPs in soils.

Keywords

Microplastics; Fibres; Soil; HGMS; Rapid extraction; Electromagnetic

Published in

Science of the Total Environment
2022, Volume: 831, article number: 154912Publisher: ELSEVIER

    UKÄ Subject classification

    Soil Science
    Environmental Sciences

    Publication identifier

    DOI: https://doi.org/10.1016/j.scitotenv.2022.154912

    Permanent link to this page (URI)

    https://res.slu.se/id/publ/123294