Skip to main content
SLU publication database (SLUpub)

Research article2023Peer reviewedOpen access

Disordered Crystal Structure and Anomalously High Solubility of Radium Carbonate

Matyskin, Artem V.; Ebin, Burcak; Allard, Stefan; Torapava, Natallia; Eriksson, Lars; Persson, Ingmar; Brown, Paul L.; Ekberg, Christian


XRD measurements of RaCO3 revealedthat it isnot isostructural with witherite, and direct-space ab initio modeling showed that the carbonate oxygens are highly disordered.It was found that the solubility of RaCO3 is unexpectedlyhigher than the solubility of witherite (log(10) K (sp) (0) = -7.5 and -8.56,respectively), supporting the disordered nature of RaCO3. EXAFS data revealed an ionic radius of Ra2+ of 1.55 & ANGS;. Radium is the only alkaline-earth metal which forms disorderedcrystals in its carbonate phase.Radium-226 carbonate was synthesized from radium-bariumsulfate ((Ra0.76Ba0.24SO4)-Ra-226) at room temperature and characterized by X-ray powder diffraction(XRPD) and extended X-ray absorption fine structure (EXAFS) techniques.XRPD revealed that fractional crystallization occurred and that twophases were formed the major Ra-rich phase, Ra(Ba)CO3, and a minor Ba-rich phase, Ba(Ra)CO3, crystallizingin the orthorhombic space group Pnma (no. 62) thatis isostructural with witherite (BaCO3) but with slightlylarger unit cell dimensions. Direct-space ab initio modeling shows that the carbonate oxygens in the major Ra(Ba)CO3 phase are highly disordered. The solubility of the synthesizedmajor Ra(Ba)CO3 phase was studied from under- and oversaturationat 25.1 & DEG;C as a function of ionic strength using NaCl as thesupporting electrolyte. It was found that the decimal logarithm ofthe solubility product of Ra(Ba)CO3 at zero ionic strength(log(10) K (sp) (0)) is-7.5(1) (2 & sigma;) (s = 0.05 g & BULL;L-1). This is significantly higher than the log(10) K (sp) (0) of witheriteof -8.56 (s = 0.01 g & BULL;L-1), supporting the disordered nature of the major Ra(Ba)CO3 phase. The limited co-precipitation of Ra2+ within witherite,the significantly higher solubility of pure RaCO3 comparedto witherite, and thermodynamic modeling show that the results obtainedin this work for the major Ra(Ba)CO3 phase are also applicableto pure RaCO3. The refinement of the EXAFS data revealsthat radium is coordinated by nine oxygens in a broad bond distancedistribution with a mean Ra-O bond distance of 2.885(3) & ANGS;(1 & sigma;). The Ra-O bond distance gives an ionic radius ofRa(2+) in a 9-fold coordination of 1.545(6) & ANGS; (1 & sigma;).

Published in

Inorganic Chemistry
2023, Volume: 62, number: 30, pages: 12038-12049

    UKÄ Subject classification

    Inorganic Chemistry

    Publication identifier


    Permanent link to this page (URI)