Skip to main content
Research article - Peer-reviewed, 2023

Protein-Protein Interactions and Quantitative Phosphoproteomic Analysis Reveal Potential Mitochondrial Substrates of Protein Phosphatase 2A-B'& zeta; Holoenzyme

Elshobaky, Ahmed; Lillo, Cathrine; Hoden, Kristian Persson; Kataya, Amr R. A.


Protein phosphatase 2A (PP2A) is a heterotrimeric conserved serine/threonine phosphatase complex that includes catalytic, scaffolding, and regulatory subunits. The 3 A subunits, 17 B subunits, and 5 C subunits that are encoded by the Arabidopsis genome allow 255 possible PP2A holoenzyme combinations. The regulatory subunits are crucial for substrate specificity and PP2A complex localization and are classified into the B, B', and B" non-related families in land plants. In Arabidopsis, the close homologs B'& eta;, B'& theta;, B'& gamma;, and B'& zeta; are further classified into a subfamily of B' called B'& eta;. Previous studies have suggested that mitochondrial targeted PP2A subunits (B'& zeta;) play a role in energy metabolism and plant innate immunity. Potentially, the PP2A-B'& zeta; holoenzyme is involved in the regulation of the mitochondrial succinate/fumarate translocator, and it may affect the enzymes involved in energy metabolism. To investigate this hypothesis, the interactions between PP2A-B'& zeta; and the enzymes involved in the mitochondrial energy flow were investigated using bimolecular fluorescence complementation in tobacco and onion cells. Interactions were confirmed between the B'& zeta; subunit and the Krebs cycle proteins succinate/fumarate translocator (mSFC1), malate dehydrogenase (mMDH2), and aconitase (ACO3). Additional putative interacting candidates were deduced by comparing the enriched phosphoproteomes of wild type and B'& zeta; mutants: the mitochondrial regulator Arabidopsis pentatricopeptide repeat 6 (PPR6) and the two metabolic enzymes phosphoenolpyruvate carboxylase (PPC3) and phosphoenolpyruvate carboxykinase (PCK1). Overall, this study identifies potential PP2A substrates and highlights the role of PP2A in regulating energy metabolism in mitochondria.


energy metabolism; Krebs cycle; mitochondria; phosphatase; phosphoproteomics

Published in

2023, Volume: 12, number: 13, article number: 2586
Publisher: MDPI

    SLU Authors

    UKÄ Subject classification


    Publication Identifiers


    Permanent link to this page (URI)