Skip to main content
SLU publication database (SLUpub)

Review article2024Peer reviewedOpen access

The physiology and pharmacology of oxytocin in labor and in the peripartum period

Uvnäs-Moberg, Kerstin


Oxytocin is a reproductive hormone implicated in the process of parturition and widely used during labor. Oxytocin is produced within the supraoptic nucleus and paraventricular nucleus of the hypothalamus and released from the posterior pituitary lobe into the circulation. Oxytocin is released in pulses with increasing frequency and amplitude in the first and second stages of labor, with a few pulses released in the third stage of labor. During labor, the fetus exerts pressure on the cervix of the uterus, which activates a feedforward reflex—the Ferguson reflex—which releases oxytocin. When myometrial contractions activate sympathetic nerves, it decreases oxytocin release. When oxytocin binds to specific myometrial oxytocin receptors, it induces myometrial contractions. High levels of circulating estrogen at term make the receptors more sensitive. In addition, oxytocin stimulates prostaglandin synthesis and release in the decidua and chorioamniotic membranes by activating a specific type of oxytocin receptor. Prostaglandins contribute to cervical ripening and uterine contractility in labor. The oxytocin system in the brain has been implicated in decreasing maternal levels of fear, pain, and stress, and oxytocin release and function during labor are stimulated by a social support. Moreover, studies suggest, but have not yet proven, that labor may be associated with long-term, behavioral and physiological adaptations in the mother and infant, possibly involving epigenetic modulation of oxytocin production and release and the oxytocin receptor. In addition, infusions of synthetic oxytocin are used to induce and augment labor. Oxytocin may be administered according to different dose regimens at increasing rates from 1 to 3 mIU/min to a maximal rate of 36 mIU/min at 15- to 40-minute intervals. The total amount of synthetic oxytocin given during labor can be 5 to 10 IU, but lower and higher amounts of oxytocin may also be given. High-dose infusions of oxytocin may shorten the duration of labor by up to 2 hours compared with no infusion of oxytocin; however, it does not lower the frequency of cesarean delivery.

When synthetic oxytocin is administered, the plasma concentration of oxytocin increases in a dose-dependent way: at infusion rates of 20 to 30 mIU/min, plasma oxytocin concentration increases approximately 2- to 3-fold above the basal level. Synthetic oxytocin administered at recommended dose levels is not likely to cross the placenta or maternal blood-brain barrier. Synthetic oxytocin should be administered with caution as high levels may induce tachystole and uterine overstimulation, with potentially negative consequences for the fetus and possibly the mother. Of note, 5 to 10 IU of synthetic oxytocin is often routinely given as an intravenous or intramuscular bolus administration after delivery to induce uterine contractility, which, in turn, induces uterine separation of the placenta and prevents postpartum hemorrhage. Furthermore, it promotes the expulsion of the placenta.


augmentation; birth; epigenetic changes; Ferguson reflex; first stage; induction; infusion of oxytocin; labor; myometrial contractions; oxytocin; plasma levels; pregnancy; prostaglandins; pulsatile secretion; receptor; second stage; synthetic oxytocin; third stage

Published in

American Journal of Obstetrics and Gynecology
2024, Volume: 230, number: 3, pages: S740-S758