Skip to main content
SLU publication database (SLUpub)
Research article - Peer-reviewed, 2024

Exploring the benefits of intermediate crops: Is it possible to offset soil organic carbon losses caused by crop residue removal?

Barrios Latorre, Alejandro; Aronsson, Helena; Björnsson, Lovisa; Viketoft, Maria; Prade, Thomas

Abstract

CONTEXT: Agriculture plays a central role as a feedstock provider for the bioeconomy. However, utilization competing with food production and associated land use change have previously been a matter of debate. Nonetheless, strengthening the productivity of agroecosystems through sustainable intensification can prevent the depletion of natural resources, enhance food security, and facilitate adaptation to and mitigation of climate change. OBJECTIVE: This study explores the effects of combining crop residue removal for use as biomass feedstock with the establishment of intermediate crops to compensate for organic carbon depletion in arable land in Sweden. METHODS: The analysis relied on Swedish national agricultural statistics at the highest available spatial resolution (yield survey district). Crop residue calculations factored in crop:residue ratios, and harvestable and recoverable potentials. A model was devised to estimate land availability for cultivating intermediate crops based on generalized crop rotation sequences, and a spatial interpolation was employed to determine oilseed radish yields as a model intermediate crop. Estimates of long-term soil carbon inputs hinged on biomass carbon content and humification coefficients dependent on soil clay content. RESULTS AND CONCLUSION: The total annual residual biomass availability in the country stands at approximately 2139 kt per year. The potential harvestable biomass production from intermediate crops was estimated at 383 kt per year. However, spatial differences were evident in total biomass production and effects on soil organic carbon inputs. For the majority of districts, the inclusion of intermediate crops could offset the negative effect of a complete removal of crop residues on soil organic carbon inputs. In other cases, establishing intermediate crops could not compensate for these negative effects, but some differences were observed when comparing the harvesting and the incorporation of the intermediate crops’ biomass. Spatial disparities originated from variations in soil texture, intermediate crop yield, and rotation sequences. SIGNIFICANCE: This research is an attempt to address the challenge of maintaining and increasing the soil carbon stocks under the context of a growing biomass demand in a developing biobased economy. It highlights the divergent effects of combining crop residue removal with the inclusion of intermediate crops under distinct agroecological conditions in the Northern European context. By giving estimates on biomass availability and effects on soil organic carbon inputs, we provide information that can support decision making for bioeconomy planning and sustainable resource utilization. This also has long-term implications for preservation of soil fertility, agricultural productivity and climate change mitigation.

Keywords

Bioeconomy; Sustainable intensification; Cover crops; Residual biomass; Soil organic carb

Published in

Agricultural Systems
2024, Volume: 215, article number: 103873