Kardol, Paul
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences
Research article2024Peer reviewedOpen access
Kemppinen, Julia; Lembrechts, Jonas J.; Van Meerbeek, Koenraad; Carnicer, Jofre; Chardon, Nathalie Isabelle; Kardol, Paul; Lenoir, Jonathan; Liu, Daijun; Maclean, Ilya; Pergl, Jan; Saccone, Patrick; Senior, Rebecca A.; Shen, Ting; Slowinska, Sandra; Vandvik, Vigdis; von Oppen, Jonathan; Aalto, Juha; Ayalew, Biruk; Bates, Olivia; Bertelsmeier, Cleo;
Show more authors
Brief introduction: What are microclimates and why are they important?Microclimate science has developed into a global discipline. Microclimate science is increasingly used to understand and mitigate climate and biodiversity shifts. Here, we provide an overview of the current status of microclimate ecology and biogeography in terrestrial ecosystems, and where this field is heading next.Microclimate investigations in ecology and biogeography: We highlight the latest research on interactions between microclimates and organisms, including how microclimates influence individuals, and through them populations, communities and entire ecosystems and their processes. We also briefly discuss recent research on how organisms shape microclimates from the tropics to the poles.Microclimate applications in ecosystem management: Microclimates are also important in ecosystem management under climate change. We showcase new research in microclimate management with examples from biodiversity conservation, forestry and urban ecology. We discuss the importance of microrefugia in conservation and how to promote microclimate heterogeneity.Methods for microclimate science: We showcase the recent advances in data acquisition, such as novel field sensors and remote sensing methods. We discuss microclimate modelling, mapping and data processing, including accessibility of modelling tools, advantages of mechanistic and statistical modelling and solutions for computational challenges that have pushed the state-of-the-art of the field.What's next?We identify major knowledge gaps that need to be filled for further advancing microclimate investigations, applications and methods. These gaps include spatiotemporal scaling of microclimate data, mismatches between macroclimate and microclimate in predicting responses of organisms to climate change, and the need for more evidence on the outcomes of microclimate management.
animal ecology; biodiversity; biogeography; climate change; data acquisition; ecosystem management; microclimate; modelling; plant ecology
Global Ecology and Biogeography
2024, Volume: 33, number: 6, article number: e13834
Publisher: WILEY
Ecology
DOI: https://doi.org/10.1111/geb.13834
https://res.slu.se/id/publ/131106