Boström, Ullalena
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences
Research article2024Peer reviewedOpen access
Bostrom, U.; Brandsaeter, L. O.; Andersson, L.
Fast regrowth from deep roots and rhizomes makes it difficult to mechanically control the perennials Cirsium arvense and Tussilago farfara respectively. It is, however, not clear whether new shoots originate mainly from fragments of roots/rhizomes in upper soil layers or from an intact system below depth of soil cultivation. Here we present results from three experiments with natural infestations of C. arvense, and two with both C. arvense and T. farfara. Plots of 1 m(2) were excavated to different depths (13-25 cm), all below-ground plant parts in the topsoil were collected and thereafter fragments were either returned to or removed from the plots. Regrowth from disturbed plots with removed or returned fragments was compared. The origin of regrown shoots, that is, whether they originated from seeds, intact below-ground root/rhizome systems or returned fragments, was examined. More C. arvense shoots originated from the intact root system (48%-84%) than from root fragments (16%-52%). The final aboveground biomass was not affected by removal of the top-soil fragments. For T. farfara, a small proportion (3%) of new shoots originated from the intact rhizome system, and the rest from fragments. We conclude that the intact root system of C. arvense contributes at least as much as root fragments to regrowth after soil cultivation, which might imply that time of treatment and depth of cultivation are crucial for the effect of mechanical control. For T. farfara, the results suggest that tillage equipment with high capacity to fragment the rhizome system will contribute to efficient control.
Canada thistle; coltsfoot; creeping thistle; mechanical weed control; perennial weed; soil cultivation
Weed Research
2024, Publisher: WILEY
Botany
DOI: https://doi.org/10.1111/wre.12660
https://res.slu.se/id/publ/131902