Skip to main content
SLU publication database (SLUpub)

Abstract

Most studies on litter decomposition have assumed that all falling plant litter reaches the ground where it then decomposes. In many forests a proportion of this litter may in fact be intercepted by understorey vegetation, but the ecological significance of this remains poorly understood. We performed two experiments in a temperate rainforest in southern New Zealand, in which there was a dense understorey of the crown fern Blechnum discolor. The fronds of this fern originate from a crown, and have a funnel-like arrangement that can trap falling litter and prevent it from reaching the ground. The first experiment measured the effects of ferns on the spatial distribution of litter accumulation over one year. The ferns intercepted a substantial proportion of the total litterfall, and the fern crowns (from which the fronds originate) retained 10% of the total incoming litterfall (despite occupying only 2% of the ground area). The retained litter had a substantially higher ratio of twig to foliar litter than did the incoming litterfall. Further, much of the litter not retained on the crowns of the ferns accumulated at the base of the fern trunks. The second experiment considered litter decomposition in fern crowns versus the ground under the ferns. The litter that had accumulated in the crowns was characterized by higher microbial basal respiration and active microbial biomass than was the litter that had accumulated on the ground. The use of litterbags revealed that litter decomposition rates were significantly higher on the fern crowns than on the ground at 30 cm and 60 cm from the fern trunks. These results show that litter interception ameliorates the decomposer environment and increases the rate of litter decomposition. In total, this study provides evidence for understorey ferns greatly influencing both the spatial distribution of litterfall and the decomposition of plant litter. Although the ecological role of understorey vegetation in forested ecosystems has received little attention to date, our results point to understorey species as an important driver of forest ecosystem processes.

Published in

Oikos
2008, volume: 117, number: 1, pages: 83-92
Publisher: BLACKWELL PUBLISHING

SLU Authors

UKÄ Subject classification

Forest Science

Publication identifier

  • DOI: https://doi.org/10.1111/j.2007.0030-1299.16136.x

Permanent link to this page (URI)

https://res.slu.se/id/publ/16868