Skip to main content
SLU publication database (SLUpub)

Research article2008Peer reviewedOpen access

Phosphoketolase pathway dominates in Lactobacillus reuteri ATCC 55730 containing dual pathways for glycolysis

Arskold, Emma; Lohmeler-Vogel, Elke; Cao, Rong; Roos, Stefan; Radstrom, Peter; van Niel, Ed W. J.

Abstract

Metabolic flux analysis indicated that the heterofermentative Lactobacillus reuteri strain ATCC 55730 uses both the Embden-Meyerhof pathway (EMP) and phosphoketolase pathway (PKP) when glucose or sucrose is converted into the three-carbon intermediate stage of glycolysis. In all cases studied, the main flux is through the PKP, while the EMP is used as a shunt. In the exponential growth phase, 70%, 73%, and 84% of the flux goes through the PKP in cells metabolizing (i) glucose plus fructose, (ii) glucose alone, and (iii) sucrose alone, respectively. Analysis of the genome of L. reuteri ATCC 55730 confirmed the presence of the genes for both pathways. Further evidence for the simultaneous operation of two central carbon metabolic pathways was found through the detection of fructose-1,6-bisphosphate aldolase, phosphofructokinase, and phosphoglucoisomerase activities and the presence of phosphorylated EMP and PKP intermediates using in vitro P-31 NMR. The maximum specific growth rate and biomass yield obtained on glucose were twice as low as on sucrose. This was the result of low ATP levels being present in glucose-metabolizing cells, although the ATP production flux was as high as in sucrose-metabolizing cells due to a twofold increase of enzyme activities in both glycolytic pathways. Growth performance on glucose could be improved by adding fructose as an external electron acceptor, suggesting that the observed behavior is due to a redox imbalance causing energy starvation.

Published in

Journal of Bacteriology
2008, Volume: 190, number: 1, pages: 206-212 Publisher: AMER SOC MICROBIOLOGY

    UKÄ Subject classification

    Food Science

    Publication identifier

    DOI: https://doi.org/10.1128/JB.01227-07

    Permanent link to this page (URI)

    https://res.slu.se/id/publ/17467