Skip to main content
SLU publication database (SLUpub)

Research article2008Peer reviewedOpen access

The evolutionary trajectory of the mating-type (mat) genes in Neurospora relates to reproductive behavior of taxa

Wik, Lotta; Karlsson, Magnus; Johannesson, Hanna


Background: Comparative sequencing studies among a wide range of taxonomic groups, including fungi, have led to the discovery that reproductive genes evolve more rapidly than other genes. However, for fungal reproductive genes the question has remained whether the rapid evolution is a result of stochastic or deterministic processes. The mating-type (mat) genes constitute the master regulators of sexual reproduction in filamentous ascomycetes and here we present a study of the molecular evolution of the four mat-genes (mat a-1, mat A-1, mat A-2 and mat A-3) of 20 Neurospora taxa.Results: We estimated nonsynonymous and synonymous substitution rates of genes to infer their evolutionary rate, and confirmed that the mat-genes evolve rapidly. Furthermore, the evolutionary trajectories are related to the reproductive modes of the taxa; likelihood methods revealed that positive selection acting on specific codons drives the diversity in heterothallic taxa, while among homothallic taxa the rapid evolution is due to a lack of selective constraint. The latter finding is supported by presence of stop codons and frame shift mutations disrupting the open reading frames of mat a-1, mat A-2 and mat A-3 in homothallic taxa. Lower selective constraints of matgenes was found among homothallic than heterothallic taxa, and comparisons with nonreproductive genes argue that this disparity is not a nonspecific, genome-wide phenomenon.Conclusion: Our data show that the mat-genes evolve rapidly in Neurospora. The rapid divergence is due to either adaptive evolution or lack of selective constraints, depending on the reproductive mode of the taxa. This is the first instance of positive selection acting on reproductive genes in the fungal kingdom, and illustrates how the evolutionary trajectory of reproductive genes can change after a switch in reproductive behaviour of an organism.

Published in

BMC Evolutionary Biology
2008, Volume: 8, article number: 109