Skip to main content
SLU publication database (SLUpub)

Research article2012Peer reviewedOpen access

Characterization of iron in floating surface films of some natural waters using EXAFS

Berggren Klej D., Van Schaik, J., Persson I., Gustafsson JP.


Floating, iron bearing films have been observed in a wide range of environments, including wetlands, seep waters in ground water discharge areas, small rivers and lakes. To date, knowledge about their formation and composition is scarce. We have investigated the form of iron in floating iron-rich films of different origin, including a pond and a brook, as well as seep water pools of a groundwater discharge area. Sampling sites were located in southern (pond, brook) and central (seep pools) Sweden. Synchrotron-based X-ray absorption spectroscopy (EXAFS and XANES) allowed identification of the iron precipitates present in the films, without any pretreatment. The EXAFS data showed that the iron containing phase formed in the floating films varied in composition between the sites investigated. In the films from two ground water discharge areas, characterized by out-flowing iron(II) rich ground water being high in pH and low in DOC, the iron phase was completely dominated by ferrihydrite. In contrast, surface films sampled from the brook and the pond, the iron speciation showed a mixture of iron(III)-organic complexes and iron (hydr)oxide (most likely ferrihydrite). These waters were oxic and contained higher concentration of DOC than the seep water pools in the ground water discharge areas. The position of the pre-edge peak, which is sensitive to the oxidation state of iron, did not indicate occurrence of iron (II) in any of the films. Elemental composition of one film (seep water), suggested that films contained about one third of organic matter. Ferrihydrite is probably present as small particles with humic material sorbed onto surfaces or included in the particles, making the particles sufficiently hydrophobic to not settle without physical disturbance. The films are fragile and break easily down and become suspended upon disturbance. More studies are warranted in order to understand the mechanism of the formation of these fascinating films and their biogeochemical role.

Published in

Chemical Geology
2012, Volume: 326-327, pages: 19-26