Skip to main content
SLU publication database (SLUpub)

Research article2010Peer reviewedOpen access

Comparative genomics reveals conservative evolution of the xylem transcriptome in vascular plants

Li, Xinguo; Wu, Harry X.; Southerton, Simon G.

Abstract

Background: Wood is a valuable natural resource and a major carbon sink. Wood formation is an important developmental process in vascular plants which played a crucial role in plant evolution. Although genes involved in xylem formation have been investigated, the molecular mechanisms of xylem evolution are not well understood. We use comparative genomics to examine evolution of the xylem transcriptome to gain insights into xylem evolution.Results: The xylem transcriptome is highly conserved in conifers, but considerably divergent in angiosperms. The functional domains of genes in the xylem transcriptome are moderately to highly conserved in vascular plants, suggesting the existence of a common ancestral xylem transcriptome. Compared to the total transcriptome derived from a range of tissues, the xylem transcriptome is relatively conserved in vascular plants. Of the xylem transcriptome, cell wall genes, ancestral xylem genes, known proteins and transcription factors are relatively more conserved in vascular plants. A total of 527 putative xylem orthologs were identified, which are unevenly distributed across the Arabidopsis chromosomes with eight hot spots observed. Phylogenetic analysis revealed that evolution of the xylem transcriptome has paralleled plant evolution. We also identified 274 conifer-specific xylem unigenes, all of which are of unknown function. These xylem orthologs and conifer-specific unigenes are likely to have played a crucial role in xylem evolution.Conclusions: Conifers have highly conserved xylem transcriptomes, while angiosperm xylem transcriptomes are relatively diversified. Vascular plants share a common ancestral xylem transcriptome. The xylem transcriptomes of vascular plants are more conserved than the total transcriptomes. Evolution of the xylem transcriptome has largely followed the trend of plant evolution.

Published in

BMC Evolutionary Biology
2010, Volume: 10, article number: 190
Publisher: BIOMED CENTRAL LTD

    UKÄ Subject classification

    Evolutionary Biology

    Publication identifier

    DOI: https://doi.org/10.1186/1471-2148-10-190

    Permanent link to this page (URI)

    https://res.slu.se/id/publ/43270