Skip to main content
SLU publication database (SLUpub)

Research article2010Peer reviewedOpen access

Quantifying ruminal nitrogen metabolism using the omasal sampling technique in cattle-A meta-analysis

Broderick, G.A.; Huhtanen, Pekka; Ahvenjärvi, S.; Reynal, S.M.; Shingfield, K.J.

Abstract

Mixed model analysis of data from 32 studies (122 diets) was used to evaluate the precision and accuracy of the omasal sampling technique for quantifying ruminal-N metabolism and to assess the relationships between nonammonia-N flow at the omasal canal and milk protein yield. Data were derived from experiments in cattle fed North American diets (n = 36) based on alfalfa silage, corn silage, and corn grain and Northern European diets (n = 86) composed of grass silage and barley-based concentrates. In all studies, digesta flow was quantified using a triple-marker approach. Linear regressions were used to predict microbial-N flow to the omasum from intake of dry matter (DM), organic matter (OM), or total digestible nutrients. Efficiency of microbial-N synthesis increased with DM intake and there were trends for increased efficiency with elevated dietary concentrations of crude protein (CP) and rumen-degraded protein (RDP) but these effects were small. Regression of omasal rumen-undegraded protein (RUP) flow on CP intake indicated that an average 32% of dietary CP escaped and 68% was degraded in the rumen. The slope from regression of observed omasal flows of RUP on flows predicted by the National Research Council (2001) model indicated that NRC predicted greater RUP supply. Measured microbial-N flow was, on average, 26% greater than that predicted by the NRC model. Zero ruminal N-balance (omasal CP flow = CP intake) was obtained at dietary CP and RDP concentrations of 147 and 106 g/kg of DM, corresponding to ruminal ammonia-N and milk urea N concentrations of 7.1 and 8.3 mg/100 mL, respectively. Milk protein yield was positively related to the efficiency of microbial-N synthesis and measured RUP concentration. Improved efficiency of microbial-N synthesis and reduced ruminal CP degradability were positively associated with efficiency of capture of dietary N as milk N. In conclusion, the results of this study indicate that the omasal sampling technique yields valuable estimates of RDP, RUP, and ruminal microbial protein supply in cattle.

Keywords

omasal sampling; microbial protein synthesis; protein degradation; milk protein

Published in

Journal of Dairy Science
2010, Volume: 93, number: 7, pages: 3216-3230
Publisher: ELSEVIER SCIENCE INC

      SLU Authors

    • Huhtanen, Pekka

      • Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences

    UKÄ Subject classification

    Veterinary Science
    Animal and Dairy Science

    Publication identifier

    DOI: https://doi.org/10.3168/jds.2009-2989

    Permanent link to this page (URI)

    https://res.slu.se/id/publ/48147