Inselsbacher, Erich
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences
One major challenge in agriculture is improving the nitrogen (N) use efficiency of crop plants and at the same time reducing the losses of fertilizer N to the environment. The use of N-15 tracer studies in combination with process-based models has been proven to be a powerful tool for increasing our understanding of the dynamic interactions between soil, microbes and plants. Here we present a novel approach that includes plant uptake of fertilizer NH4+ and NO3-. We developed, evaluated and applied an analytical model allowing the simultaneous estimation of 14 processes within the N cycle using results from a previously published N-15 tracer study (Inselsbacher, E., Hinko-Najera Umana, N., Stange, P.C., Gorfer, M., Schuller, E., Ripka, K., Zechmeister-Boltenstern, S., Flood-Novotny, R., Strauss, J., Wanek, W., 2010. Short-term competition between crop plants and soil microbes for inorganic N fertilizer. Soil Biology & Biochemistry 42, 360-372]. The model revealed that plant NO3- uptake governed the overall N cycle during the 8-days greenhouse study. Nitrification was the main fate of NH4+ but its kinetics differed significantly between soils. The model-based calculations proved to be a major advancement compared to the commonly used calculations based on the pool dilution technique, due to the number of estimated parameters, their respective kinetic shifts over prolonged time periods and their explanatory power. In future N-15 tracer studies this analytical tool will allow accounting for the effect of plant N uptake on soil N transformations. (C) 2012 Elsevier Ltd. All rights reserved.
N-15 tracing; Model; Gross N transformations; Plant N uptake; Agriculture; Inorganic N fertilizer
Soil Biology and Biochemistry
2013, volume: 57, pages: 301-310
Publisher: PERGAMON-ELSEVIER SCIENCE LTD
Forest Science
https://res.slu.se/id/publ/50435